
IBM Application Discovery for IBM Z Build
V5.1.0

User Guide

IBM

SC27-8970-06

Contents

Chapter 1. Accessibility Features for IBM Application Discovery for IBM Z.............. 1

Chapter 2. Introduction... 3
IBM AD High-Level Architecture Overview ...3
Supported Source Components.. 4
About This Guide..4
Terms And Conventions...5

Chapter 3. Installation...7

Chapter 4. IBM AD Build Client...9
Projects, Folders & Files.. 9
Tasks.. 9

Starting IBM AD Build Client.. 10
Creating a Project... 10
Adjusting Settings.. 12
Adding Files to Project Folders.. 16
Building Projects.. 22
Updating Projects... 24
Synchronize Mainframe Members... 25
ChangeMan – IBM AD Validation Process... 25
Display Build Results..27
CICS CSD Information Handling.. 27
Extensibility.. 29
Configuring the PL/I Preprocessor...34
Preparing repository using DDL scripts for Db2 on z/OS projects.. 36

Chapter 5. IBM AD Build Client Reference.. 39
Main Screen..39

Main Menu.. 39
Main Screen Toolbar...41

Project Tab... 41
Tab Icons Summary... 42
Right Click / Shortcut Menus..42
Output Pane..44

Working with IBM AD Build Client Windows... 45
Viewing Source Programs.. 45
Building Decisions.. 45
Using the Editor.. 48
Using the Settings Option...49
The Options Window.. 51
The Properties Window.. 51

Chapter 6. IBM AD Build Configuration... 53
Viewing Project Information..53
Deleting a Project...54
Renaming a Project..54
Associating a z/OS Access Point to a Project..54
Recreate a Repository... 55
Upgrade a Repository.. 55

 iii

Stop the Mainframe Import... 56
Configuring the z/OS Connection.. 56
Bringing Operational Information... 66

Retrieve Operational Information..66
Bringing data from mainframe libraries (PDS Libraries, Endevor, Librarian, Natural)............................. 70

Retrieving Source Code Information... 71
Bringing Data From Mainframe Using ChangeMan® ZMF..73

Retrieving ChangeMan® Information... 73
The zOS Tab... 74
Automatic Messaging...76

Chapter 7. IBM AD Build Client and IBM AD Build Configuration CLI Commands.... 77
I. Overview... 77
II. Description of the IBM AD Build Client Batch Commands.. 77
III. Description of the IBM AD Build Configuration Batch Commands.. 81
IV. Use Cases and Best Practices.. 82
V. Setting up Automatic Updates with Windows Scheduler... 84

Appendix 1 - API Extensibility Tutorial...85
API Extensibility Sample Files...85
Setting Up a Build with Sample Files.. 86
Extending from Sample Files to Your Projects..88

Appendix 2 - Log Files Location.. 89
IBM AD Build Configuration...89
IBM AD Build Client... 89
Synchronize Members Process Log Files.. 90

Detailed Log Files Location.. 90
Appendix 3 - Synchronize Members Configuration File Examples.......................... 91
Appendix 4 - Extensibility JSON/Configuration File Examples...............................95

Preprocessing Extensibility Examples.. 95
API/Macro Call Extensibility Examples .. 98
JCL Call Extensibility Examples.. 110
Dependency Extensibility Examples...114

Appendix 5 - z/OS Subsystem and Third-Party Product Configuration Checklists.119

Documentation Notices for IBM Application Discovery for IBM Z......................... 121
Trademarks..122

iv

Chapter 1. Accessibility Features for IBM Application
Discovery for IBM Z

Accessibility features assist users who have a disability, such as restricted mobility or limited vision, to
use information technology content successfully.

Overview

IBM® Application Discovery for IBM Z® includes the following major accessibility features:

• Keyboard-only operation
• Operations that use a screen reader

IBM Application Discovery for IBM Z uses the latest W3C Standard, WAI-ARIA 1.0 (www.w3.org/TR/wai-
aria/), to ensure compliance with US Section 508 (www.access-board.gov/guidelines-and-standards/
communications-and-it/about-the-section-508-standards/section-508-standards) and Web Content
Accessibility Guidelines (WCAG) 2.0 (www.w3.org/TR/WCAG20/). To take advantage of accessibility
features, use the latest release of your screen reader and the latest web browser that is supported by IBM
Application Discovery for IBM Z.

The IBM Application Discovery for IBM Z online product documentation in IBM Knowledge Center is
enabled for accessibility. The accessibility features of IBM Knowledge Center are described in the
Accessibility section of the IBM Knowledge Center help (https://www.ibm.com/support/
knowledgecenter/en/about/releasenotes.html).

Keyboard navigation

This product uses standard navigation keys.

Interface information

For alternative installation using Command Line Installation (CLI), refer to section Alternative Installation
for ADDI Using CLI in IBM AD Installation and Configuration Guide.

The IBM Application Discovery for IBM Z user interfaces do not have content that flashes 2 - 55 times per
second.

The IBM Application Discovery for IBM Z web user interface relies on cascading style sheets to render
content properly and to provide a usable experience. The application provides an equivalent way for low-
vision users to use system display settings, including high-contrast mode. You can control font size by
using the device or web browser settings.

The IBM Application Discovery for IBM Z web user interface includes WAI-ARIA navigational landmarks
that you can use to quickly navigate to functional areas in the application.

Related accessibility information

In addition to standard IBM help desk and support websites, IBM has a TTY telephone service for use by
deaf or hard of hearing customers to access sales and support services:

TTY service
800-IBM-3383 (800-426-3383)
(within North America)

For more information about the commitment that IBM has to accessibility, see IBM Accessibility
(www.ibm.com/able).

© Copyright IBM Corp. 2010, 2019 1

http://www.w3.org/TR/wai-aria/
http://www.w3.org/TR/wai-aria/
http://www.w3.org/TR/wai-aria/
http://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards
http://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards
http://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards
http://www.w3.org/TR/WCAG20/
http://www.w3.org/TR/WCAG20/
http://www.w3.org/TR/WCAG20/
https://www.ibm.com/support/knowledgecenter/en/about/releasenotes.html
https://www.ibm.com/support/knowledgecenter/en/about/releasenotes.html
https://www.ibm.com/support/knowledgecenter/en/about/releasenotes.html
https://www.ibm.com/support/knowledgecenter/SSRR9Q_5.0.5/IBM_AD_Installation_and_Configuration_Guide_OUT_KC/alternative_installation_for_addi_using_cli.html
https://www.ibm.com/support/knowledgecenter/SSRR9Q_5.0.5/IBM_AD_Installation_and_Configuration_Guide_OUT_KC/alternative_installation_for_addi_using_cli.html
http://www.ibm.com/able
http://www.ibm.com/able

2 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

Chapter 2. Introduction

IBM Application Discovery for IBM Z (AD) Build Client is an application-oriented Configuration
Management database (CMDB) that automates application understanding and technical documentation
for use in all application management activities. Synchronizing with your source configuration
management system, it contains a full inventory of your application components and their details. IBM AD
Build Client is an indispensable tool for support activities and a precursor to undertaking enhancements
and modifications. It is designed for use by all technical staff, having management components for
transparency into application metrics.

IBM AD High-Level Architecture Overview
The following diagram illustrates IBM Application Discovery for IBM Z high-level architecture and the
relationships among the different components of the suite.

Figure 1. IBM AD high-level architecture

Following is a brief description of the relationships among the different components of IBM AD.

IBM AD Configuration Server ensures the consistency of the installation parameters throughout an
installation and allows the system administrator to manage user access to workspaces.

IBM AD Build - uses data from mainframe systems to build projects. It uses project sources that are
brought from z/OS®®, performs a compilation/build process and stores the analysis data to the repository.

IBM AD Validation Service - works with ChangeMan SCM only. Provides coding rule enforcement via
synchronization with ChangeMan and upon member staging.

© Copyright IBM Corp. 2010, 2019 3

IBM AD Batch Server - imports data from the relational database repository into the GraphDB (OrientDB)
repository, automates processes such as report generation and indexing, and manages the creation of the
annotations database.

IBM AD Analyze Client - runs over Eclipse or IDz and provides project analysis via graphs reports and
usage views. When the analyzed application sources are coming from Endevor, it allows viewing source
code per user based on Endevor permissions that are checked via z/OS Explorer/CARMA interface.

IBM AD Mainframe Projects - authorizes the access to the AD projects, by using SSO authentication
within AD. This service is mandatory to be configured to use AD, whether the authentication feature is in
place or not.

IBM AD File Service - in the context of the authorization/authentication, the access rights of users or
users' groups are mapped to a certain folder that contains the source files. Once authenticated and
authorized, the user can start the analysis on the source files as long as the user has read access rights.

IBM AD Search Service - is responsible with the access to the indexed data. Whether the authentication
feature is in place or not, the folder path in which the indexes are generated needs to be accessible for
both IBM AD Batch Server and IBM AD Search Service.

IBM AD Manual Resolutions Service - manages the manually added resolutions and allows clients that
use SSO authentication within AD to ask for user authentication to access these resolutions. This service
is mandatory to be configured if you want to use callgraph-based analyzes (graphs or reports), whether
authentication feature is in place or not.

Authentication Server (DEX) - is an identity service that uses OpenID Connect and supports OAuth2
protocol in order to allow clients to use SSO authentication within AD. With the credentials provided by
the user, it interrogates a Secure Storage, through the LDAP protocol. The Secure Storage can be an
Active Directory or any other entity that stores users and groups and can communicate through LDAP.
This service is mandatory to be installed and configured only when authentication feature is in place.

IBM AD Cross Applications Service - is mandatory to be configured if you want to generate a Cross
Applications Callgraph, whether the authentication feature is in place or not.

Batch Web Service - serves the data that is provided by a component of the Batch Server and prepares it
for delivery.

IBM AD Web Services - contains the following features: AD Audit, AD Catalog and AD BRD REST API.

Supported Source Components
The standard edition of IBM AD Build Client supports the following source components:

• OS - z/OS/OS-390z/OS
• Languages - zOS Cobol, DT Cobol, Natural, PL/I, ADS, ADS/O, Assembler
• Databases - DB2®®, Adabas, IMS/DB, IDMS, Relational, Datacom
• Transaction Monitor - CICS®, IMS/DC
• Mapping Types - BMS, MFS, NLM, ADS Map
• Batch Components - JCL, Proc, Cntrl
• File types - ISAM

About This Guide
The objective is to provide the information that is needed to use IBM AD Build Client, and to understand
the capabilities.

Note: For instructions on how to install IBM AD Build Client, see IBM AD Installation and Configuration
Guide.

4 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

A description of the following sequence of steps and procedures that are typically followed to set up and
analyze a system, are described as follows.

1. Setup

• Create a project.
• Add files to the project.
• Update project resources.

2. Analysis

• Collect information on an application (called a ‘Build’) and store the results in the repository.
• Make and integrate the current version of a project resource into the built project.
• Search in project for a specific project resource.

Terms And Conventions
The following terms and conventions are used:

• Commands are printed as shown.
• Chapter references are indicated as shown. For page numbers, refer to the Table of Contents.
• File references are printed as shown.
• Button names and options/functions within a dialog box are printed as shown.

Chapter 2. Introduction 5

6 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

Chapter 3. Installation

IBM AD Connect for Mainframe is a vital component of IBM AD Build Client. This component brings data
from the mainframe system. For details on how to install this component, see IBM AD Connect for
Mainframe Configuration Guide.

IBM AD Build Client uses a relational database as a repository for storing data. If you want to view this
data, you need the relational database. The tables and fields in the repository are described in detail in
IBM Application Discovery for IBM Z Repository document.

Note: The IBM Application Discovery for IBM Z Repository document is provided upon
request by IBM Support.

© Copyright IBM Corp. 2010, 2019 7

https://www.ibm.com/support/knowledgecenter/SSRR9Q_5.1.0/IBM_AD_Connect_for_Mainframe_Configuration_Guide_OUT_KC/AD_Connect_For_Mainframe_landing_page.html
https://www.ibm.com/support/knowledgecenter/SSRR9Q_5.1.0/IBM_AD_Connect_for_Mainframe_Configuration_Guide_OUT_KC/AD_Connect_For_Mainframe_landing_page.html

8 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

Chapter 4. IBM AD Build Client

Following is an overview of the use of IBM AD Build Client. It introduces the concepts and capabilities of
the product and describes the typical sequence of tasks to be followed for setting up a project and
undertaking the analysis. Since the objective is to provide a general picture of the use of IBM AD Build
Client, not all the capabilities, alternatives, and options available at each stage are described
exhaustively. A detailed reference for all aspects of IBM AD Build Client is presented in Chapter 5, “IBM
AD Build Client Reference,” on page 39.

Projects, Folders & Files
Organizational entities for working with IBM AD Build Client include projects, folders, and source files. A
project corresponds to an application.

A project contains a number of folders, where each folder refers to a specific type of source file that is
used by the application. The default folders for a project are determined by the project definition at
creation time. For example, a Cobol project has by default folders for COBOL, Copy, BMS, JCL, and
Configuration source files. A Natural project has by default folders for Natural programs, Natural Include,
Natural Maps and Data Area. Each folder contains a list of the files of the corresponding type that are used
by the original application. These files are also used by IBM AD Build Client.

Although for each IBM AD Build Client project folder a physical folder is created automatically under the
project folder on the disk, any file can be added through IBM AD Build Client to the project folder without
having to physically copy it to the corresponding folder on the disk. The physical folders are created only
at the default location where IBM AD Build Client looks for files when you add files to the project folders.
Files in an IBM AD Build Client project folder are references to the original source files somewhere on the
disk or on a remote network drive and not physical copies of them.

Note: Starting with the 5.0.4 release, additional folders of specific type can be manually added to a
project, if the Extensibility feature(s) have been enabled.

Tasks
Working with IBM AD Build Client usually includes the following tasks:

Task Explanation

1. Starting IBM AD Build Client

2. Starting IBM AD Build Configuration Define the database connection parameters (if
applicable).

3. Create Project Create a project by specifying the project name,
project type (single or multi-app), location,
environment, languages, DB type, and Map type
and the relational database server name.

4. Project Settings Adjust the project settings.

5. Project Files Add files to the project.

6. (Re)build Build the project.

Tasks 2, 3, 4 and 5 are set up and organizational steps. Their purpose is to define the source material to
be analyzed. Step 6 (Build) creates and populates the repository, which is the basis for the Analysis step
in IBM AD Analyze.

© Copyright IBM Corp. 2010, 2019 9

The following sections describe the typical tasks that are run in IBM AD Build Client. In many cases, you
have alternative ways for activating the same IBM AD Build Client functions (main menu, menus,
keyboard shortcuts, and the main screen toolbar). In Tasks, references are mostly made to the main
menu commands. The alternatives are described in Chapter 5, “IBM AD Build Client Reference,” on page
39.

Starting IBM AD Build Client
When IBM AD Build Client is started, the main screen appears. All activity takes place within this screen.
It is empty until a new project is created or an existing one loaded.

Creating a Project

About this task

IBM AD Build projects correspond to independent applications. An IBM AD Build project can contain
references to all application source files or to part of them. The source files are organized into folders that
are category lists for the different kinds of files that make up the project/application. For example,
program (such as COBOL) source, copy, and BMS files are listed in the project’s Program, Copy, and BMS
folders. Standard folders are defined and included in the project by default. However, you can define new
folders if necessary.

Creating an IBM AD Build project creates a project folder on the computer or on a network drive. You can
specify the location for this folder.

To create a new project, follow these steps.

Procedure

1. Select File > New > New Project. The New Project window appears.

10 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

Note: The options available in the New Project window depend on the version of the purchased
application.

2. Enter the name of the new project in the Project Name text box.
3. The Path field displays the default projects path. To select a different path, click Browse and select

an alternative location.
4. The Environment, Project Languages, DB Types, and Map Types sections present the default options.
5. From the Project DB Type list, select one of the following database types:

• Microsoft SQL Server
• IBM Db2® for z/OS

Note: A new Db2 database and schema can be created by using DB2_CreateObjects.sql DDL
script. The database can be attached by using Attach to database option where the database name
and schema need to be introduced manually. For more information, see “Creating Db2 Database
Using DDL Script” on page 36.

6. CCS Environment field: if in IBM AD Configuration Server only one environment was defined, this
field displays the name of that environment. If several environments were defined in IBM AD
Configuration Server, click the arrow button to display a list of available environments and select
one. For details on environments, see IBM AD Configuration Server User Guide.

7. Server Name field: this field displays the name of the relational database server that was associated
to the selected environment in IBM AD Configuration Server.

8. Click Next. The Project Folders dialog box appears for selecting and defining project folders. This
screen presents different folder names, depending on the environment selected.

9. To accept the default folders without entering the Project Folders screen at all, click Finish instead
of Next.

10. Select folders by moving them from the All Folders to the Selected Folder lists, by using >, or clear
them using <. Default All Folders and Selected Folder lists are provided. The content of these lists

Chapter 4. IBM AD Build Client 11

depends on the project type that is selected in the previous step. For an existing project, you can
select Project > New Folder to open a dialog box for adding more folders.

11. Click Finish. The new project is created and displayed as a tree in the Project pane (left side of the
window).

12. Additionally, after a project is created, the Business Rules Discovery (BRD) feature can be enabled.
For more information, see Enabling Business Rules Discovery in IBM AD Configuration Server User
Guide.

Adjusting Settings
From the Settings window, the following actions can be performed.

1. From the Search Paths Order window, modify the default search paths, add several search paths for a
resource type, and set the order in which these paths are accessed.

When resources such as COBOL, Natural, PL/I are built in IBM AD Build Client, the corresponding
include/copybook, control, proc, and macro files are searched, according to the default
extensions in the default project folders.

2. Generate a log file under each project folder during the build process. This procedure takes up more
disk space but allows a detailed inspection of the build process if an error occurs. Keep this option
cleared. If you are requested to activate it, a password is supplied by the IBM AD support team.

3. Determine whether a file or all the files from a project folder is included or not in the analysis (Build).
For the Include folders (Natural Include, Cobol Include, Assembler Include), use Settings
to override the default extensions for these files. More parameters are available for each resource
type.

12 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

https://www.ibm.com/support/knowledgecenter/SSRR9Q_5.1.0/IBM_AD_Configuration_Server_User_Guide_OUT_KC/enable_business_rules_discovery.html

4. Set up an IMS DB Environment for COBOL programs that use EXEC DLI commands and DL/I calls.

A corresponding IMS DB Environment needs to be set up for the programs that access IMS databases
and/or IMS transactions.

IBM AD Build Client analyzes COBOL programs that use EXEC DLI commands and DL/I calls. All
programs that access IMS databases and/or IMS transactions need to have a corresponding PSB,
therefore an appropriate environment needs to be set up at the folder's project level.

To set up an IMS DB Environment, follow these steps:

a. Select Show the project tree check box and expand the project tree.
b. Select zOS Cobol folder and choose the appropriate IMS DB Environment as in the following

image.

Chapter 4. IBM AD Build Client 13

Note: The None option is selected by default.

For more information about the difference between the environments, go to the PCBs and PSB
topic in the IBM IMS documentation.

5. Select the Using EXEC DLI (IMS related) check box to analyze COBOL programs with EXEC DLI
commands that are present in the project.

14 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

https://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.apg/ims_pcbandpsbs.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2

When Using EXEC DLI (IMS related) check box is selected, two builds are triggered, increasing the
build operation time.

The second build is triggered when program "A" calls subprogram "B", where "A" is the main COBOL
program that has a corresponding PSB, and "B" is the subprogram that contains the EXEC DLI
commands.

Note: As a result, a message is shown in the output window, informing that Building programs
related to IMS EXEC DLI in subprograms.

During the first build, a IMSExecDliInSubprograms.txt file is generated automatically and has the
following format:

<called program name "B">, <parameter number 1>, <OffsetStart1>, <OffsetLength1>,
<LinkageSectionVariable1>, <PCBNumber>

The generated file is used to resolve the parameters that are parsed from the main COBOL program
"A" to the subprogram "B".

Examples of the generated IMSExecDliInSubprograms.txt file:

• When a program name is called together with the parameters and their positions, where -1
represents the PCB number

B,4,1,2,VAR1-PCB-NUM,-1

• When a program name is called together with the PCB number, where -1 represents the parameters
and their positions

B,-1,-1,-1,,11

6. Enable the Extensibility features:

Chapter 4. IBM AD Build Client 15

• Enable API/Macro handling by using a configuration file.
• Enable handling of before and after preprocessed source code.

For more information, see “Using the Settings Option” on page 49.

Adding Files to Project Folders
After you create the project and its folders, the files to be analyzed must be added to the appropriate
project folders. Following are the project folders and the sources that can be placed in each one of them.

Note: Project folders depend on the type of selected project at project creation time. Therefore, for some
projects, some of the following folders are not available.

The project folders that are created, differ according to the environment selected as shown in the
following table:

Environment Folders- Description

z/OS • AAuto Scheduling - A-AUTO Dataset Flag Report.
• AAuto Scheduling - A-AUTO Scheduling programs.
• ADS Dialog - N/A.
• ADS Map - N/A.
• ADS Process - ADS Process files.
• API Config - Files containing configurations for the API calls.
• Assembler - Assembler files.
• Assembler Include - "Assembler include" files.
• Assembler Macro - Assembler macros.
• BMS - BMS assembler definitions (relevant only for CICS® projects).
• Cobol IDMS - Cobol IDMS files.
• Cobol IDMS Record - Cobol IDMS Record files.
• Cobol Include - COBOL copybooks and include files.
• Configuration - CSD files.

16 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

Environment Folders- Description

• Configuration - IMS/T PGM
• Configuration - PGM Aliases.
• Control-M - XML files (exported from Control-M Enterprise Manager)

containing jobs and conditions.
• Data area - Natural data area that includes Local Data Area, Parameter Data

Area, and Global Data Area.
• DBD - IMS DBD files.
• DT Cobol - Data Type Cobol files.
• DT Cobol pre-compiled - Pre-compiled data type Cobol files.
• IMS MAP - MFS files (relevant for IMS projects only).
• JCL - JCL Jobstream files.
• JCL Control files - JCL Control files.
• JCL Include - JCL Include files.
• JCL Procs - JCL procedure files.
• MQ - MQ configuration files.
• Natural - Natural programs
• Natural DDM - Natural DDM files.
• Natural Include - Natural include files.
• Natural Map - Natural map definitions.
• PL1 - PL/I programs.
• PL1 IDMS Record - PL/I IDMS record files.
• PL1 Include - PL/I copybooks and include files.
• PreProc Before - User's original sources.
• PreProc Config - Files containing mappings between the folders of the

before, meta and after files.
• PreProc MetaData - Files that map the before files with after files.
• PSB - IMS PSB files.
• Schema - IDMS schema
• Subschema - IDMS Sub-schema.
• z/OS Cobol - Simple Cobol files.

Some environment files are not added directly to one of the project folders. Instead, they are put under
the project directory on the hard disk. The project directory is the location where the project was created,
specified in the path field at project creation time. Following is a list of these environment files.
Files under the project directory on the hard disk

Control files
These files can be placed by default into the CTRL directory that is automatically created under
the project directory. Control files must not have any extension in order for IBM AD Build Client to
locate them. In case you have several control files with the same name that are taken from
different libraries and used by the JCL files according to the search order, create a directory under
the project directory for each library. For example, if two control files with the same name that are
taken from two libraries LIB1.MYCTRL and LIB2.MYCTRL, create two directories that are named
LIB1.MYCTRL and LIB2.MYCTRL under the default CTRL directory and place each procedure in
the corresponding directory. The IBM AD Build Client JCL compiler searches for the right folder
according to the search order specified in the JCL.

Chapter 4. IBM AD Build Client 17

Note: This procedure is needed only if you have two control files with the same name, in which
case they cannot be both put in the default directory CTRL.

The Control files (or the PARM files) are the source members referenced in DD cards in the format
of DSN=MY.PDS.NAME(CTRLMMBR). These Control files may contain SORT parameters, or SYSIN
data, or Db2 command (if in SYSTSIN card for Db2 invocation programs), all depending on the
step they are used in and the DD card name.

The JCL include files are files that are included in the JCL source using the INCLUDE command,
e.g.//LABEL001 INCLUDE MEMBER=INCFILE1INCFILE1 is the JCL include member. Usually these
will have list of DD cards commonly used together in many JCL sources, and put into one shared
file to simplify maintenance in case you want to add/remove/change a DD card. They can also
contain full steps.

Procedure files (also known as PROCS)
These files, which are referenced from JCL files, can be placed by default into the SYS1.PROCLIB
directory that is automatically created under the project directory. Procedure files must not have
any extension in order for IBM AD Build Client to locate them. In case you have several procedure
files with the same name that come from different libraries and used by the JCL files according to
the search order, create a directory under the project directory for each library. For example, if
two procedure files with the same name that are taken from two libraries LIB1.MYPROC and
LIB2.MYPROC, create two directories that are named LIB1.MYPROC and LIB2.MYPROC under
the project directory and place each procedure file in the corresponding directory. The IBM AD
Build Client JCL compiler searches for the right folder according to the search order specified in
the JCL.

Note: This procedure is needed only if you have two procedure files or include files with the same
name, in which case they cannot be both put in the default directory SYS1.PROCLIB.

PSB files
These files, used only by the IMS application, must be placed in a directory that is named PSB
under the project directory. This directory is not created automatically and therefore must be
created if needed.

The AAuto scheduling folder
This folder can host two types of files: AAuto scheduling files and AAuto Dataset Flag
report files.

Before you run the build process, make sure to set the correct type for the AAuto Dataset
Flag report file: In the Project pane, right-click on the Dataset flag report file that is
loaded in the AAuto Scheduling folder of the project and select Properties. In the File
Properties window, verify that the Type is set to AAuto Dataset Flag Report. (the file type
verification can be done either when the file is loaded in the project or at a later moment, but
before the build step is run).

The CICS CSD configuration file
A CICS administrator can use the LIST command of CICS utility DFHCSDUP to extract CSD
information into a report. The report can be stored under the Configuration virtual folder and
can be added to a build project as a CSD type of file. The build process parses the CSD
configuration file and stores the information into the MFCICS tables.
The name of the CSD configuration file must have maximum eight characters, because the file
name is used as the CICS region name. For more information, see chapter “CICS CSD Information
Handling” on page 27.

The IMS transaction mapping file
This configuration file is used to map between IMS transactions and programs. The file must be
placed under the Configuration virtual folder in the project. The type of the file must be IMS/T
PGM. See the following example of mapping configurations in an IMS transaction mapping file:

TRANSACTION(TRAN1) PROGRAM(PROG1) IMS-TM
TRANSACTION(TRAN2) PROGRAM(PROG2) IMS-TM

18 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

The Pgm_Aliases file
This configuration file for aliases is used to specify external alias names coming from outside the
source files. The file will be added in the Configuration virtual folder, in the project, with type
PGM Aliases. The configuration file for aliases is a comma separated file, having the following
format:

* - a commented line starts with '*'
<optional disambiguation file path>, <procedure/program name defined in file>, <alias name 2>,
<alias name 3>

In case the alias name is not configured with a file path, the file format is as following:

<program/procedure defined in file>, <alias name 1>, <alias name 2>
* procedure name in case of PLI/I file

PGM Aliases (Configuration) Files Example:

* this is a commented line
\\shared-resoures-dir\Projects\Pgm_Alias_002\PL1\PLI1, PLI1, PLI01, PLI001
\\shared-resoures-dir\Projects\Pgm_Alias_002\PL1\PLI1_1, PLI01, PLI_1, PLI_01, PLI1
PLI2, PLI002, PLI0002
PLI3, PLI03

Note:

• These program aliases, <program/procedure defined in file>, <alias name 2>, <alias name
3>, can be declared in any order, provided <program/procedure defined in file> exists among
the aliases names. Example: if only <alias name 2>, <alias name 3> are present and <alias
name 3> is called, while <alias name 2> is not found as a program/procedure definition in any
source file, then <alias name 3> will not be replaced with <alias 2> in the call.

• The first item <optional disambiguation file path> which is the fully-qualified-name of the file,
is optional and only needed when the same alias name refers to actually different programs: in
the example above, the same program alias name PLI01 refers to two different programs,
defined in two different files. If only one fully-qualified-file-names of the two will be present or
the two lines meant to be told apart have no alias name in common, the fully qualified file name
would not make any difference.

• If disambiguation between two alias groups is needed, the fully-qualified-file-name of a PL/I file
must be added in the 1st position, as it shows in Project > Properties. Example: if the file was
added with a network path, the same syntax must be used into the PGM Aliases file.

• After adding new alias name(s) into the PGM Aliases configuration file, it is recommended to
(re)compile both the configuration and the PL/I files, where <procedure/program name
defined in file> exists, in this order. Example: configuration file > PL/I file.

Note: When (re)building the entire project, the configuration file is build first by default.

Important: Currently, the external alias names feature is only available for PL/I programs.

The PgmModuleMap file
This file is used to map between load module and the first program that is called in the module
(relevant only for batch applications). By default, IBM AD Build Client assumes the module name
and the name of first program that is called are identical. In case they are not identical, a mapping
must be described in the PgmModuleMap.txt file, which must be placed under the project
directory. Following is an example of the file content:
OKC82 OKC8201
OKC75 OKC7501
OJC07 OJC0701

On the left side, the module name is specified and on the right side, the first program name is
specified.

The PSBmap file
This file is used to link the program and the PSB file names (the format contains: PgmName,
PgmType, PSBFileName).

Chapter 4. IBM AD Build Client 19

If CBLTDLI and PLITDLI (IMS related) are used, IBM AD Build Client assumes the program name
and the name of the PSB file are identical. In case they are not identical, a PSBmap.txt file needs
to be created and configured to describe the mapping between the program name and the name
of the PSB file.

If EXEC DLI (IMS related) is used, IBM AD Build Client assumes the program includes the
schedule command EXEC DLI SCHD PSB. In case that the EXEC DLI SCHD PSB command is not
present in the program, a PSBmap.txt file needs to be created and configured to describe the
mapping between the program name and the name of the PSB file.

Important: The PSBmap.txt file needs to be placed in the root of the project's directory, to
<Project Path>\<ProjectName>\ folder. The ProjectName folder was created when the
project was initially defined in IBM AD Build Client. It is located, by default, directly under the
Default project path filled in IBM AD Configuration Server > Install Configurations > IBM AD
Discovery Build Client.

Following is an example of the file content:
EDADL3M,Cobol,EDADL3P
EDADM2M,Cobol,EDADM2P
EDADM4M,PL1,EDADM4P
EDADN2M,PL1,EDADN2P

On the left side, the program name is specified, in the middle the program type (Cobol or PL1) is
specified, and on the right side, the PSB file name is specified. For Cobol programs, in case the
PROGRAM-ID and the file name are not identical, PROGRAM-ID name is used to map (link) the
Cobol program with the PSB file name.

To add files to a folder, follow these steps:

1. In the Project tab, click the folder name, and then select Project > Add Files. Alternatively, right-click
the folder name and choose Add Files. A file selection window opens.

2. Locate the files (they can be on any drive and directory) and select them individually or in groups (by
using the Windows SHIFT key or CTRL key mechanism).

3. Click OK to add the selected files to the project. The names of the files appear in the expanded file
structure in the project tree.

4. Repeat the Add Files procedure to add all necessary files to each of the project folders.
5. If you need to add a long list of files, you can use the option Add All Files from Folder. Selecting this

option presents you with the following window:

Note: Make sure that the folder path is correct; click OK to add all the files from that folder to the
corresponding project folder.

6. To save the programs, files, and projects in their current states, select File / Save All.

Note: It is possible that the process of adding files can take a long time during which you cannot use
the application. If you need to use the application, you can run the Add files process in the
background. To make the Add files operation to run in the background, follow these steps:

a. Click Start, select Run then type cmd to open the command window.

20 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

b. Go to the folder where your IBM AD Build Client is installed and locate the
IBMApplicationDiscoveryBuildClient.exe file. Drag the
IBMApplicationDiscoveryBuildClient.exe file into the command window then enter “/?”
and press ENTER. A window is displayed containing detailed instructions about how to make a
specific process to run in the background.

Adding Files From Mainframe Library

About this task

To add files from the mainframe library to your project, some preliminary steps need to be taken in the
IBM AD Build Configuration. See “The zOS Tab” on page 74 for more details.

Procedure

1. In your Project tab select the folder where you want to import files from the mainframe library then
right-click to display the menu and from it select Add Files from Mainframe to display the following
window.

2. A list of imported libraries is displayed. Select the libraries from which you want to import resources
then click Next: the Member Files from Mainframe Selected Libraries window is displayed.

Note: Only libraries that contain at least one member are displayed.
3. A list of members that are identified within the imported libraries is displayed. For each resource the

following data is displayed:

• The type of the resource (Assembler Macro CICS map BMS, Cobol Program).
• The source (z/OS).
• The name of the library where it was found.

4. Select the files that you want to add to your project and click Finish. The selected files are added in
the current folder of your project: Their respective names indicate their source – z/OS, and the name of
the library from where they are imported and their original name.

Adding Files From ChangeMan ZMF Packages

About this task

To add files from the mainframe by using ChangeMan ZMF Packages, some preliminary steps need to be
taken in the IBM AD Build Configuration. For more information, see “The zOS Tab” on page 74 and
“Configuring the z/OS Connection” on page 56.

Chapter 4. IBM AD Build Client 21

Procedure

1. In your Project tab, select the folder where you want to import files from the mainframe then right-
click to display the menu and from it select Add Files from Mainframe to display the following
window.

2. Select Add by Packages (ChangeMan) then click OK to display the Add Files from Mainframe
Libraries window. A list of imported packages is displayed.

Note: Only libraries that contain at least one member are displayed.
3. Select the package from which you want to import resources then click Next: the Member Files from

Mainframe Selected Libraries is displayed. A list of members that are identified within the imported
package is displayed. For each resource, the following data is displayed.

• The method that is used for import (SRC - ChangeMan).
• The source (z/OS).
• The name of the package where it was found.

4. Select the files that you want to add to your project and click Finish. The selected files are added in
the current folder of your project: Their respective names indicate their source – z/OS, and the name of
the package from where they are imported and their original name.

Building Projects

About this task

A “build” is the process where IBM AD Build Client reads project sources, places the results in the project
repository, and generates the data that is needed to display the graphical representation of the
applications’ internal and external program relationships.

The build process can be ran on individual programs in the project, on a batch of selected files and folders
or globally on all the resources in the project. Generally, you make a global build, but if, for example, a
single source file is changed, a build on that file alone would be appropriate. In that case, only the
modified program is analyzed and the project repository is updated accordingly.

Procedure

1. To build a project, follow the steps bellow.
a) Select Build / Build Project to start the build process. A warning message alerts you to the fact

that this operation erases the database. Click Yes to start the build process.
b) As each file is processed, its name and accompanying notes and messages, including error

notifications, are displayed in the Message pane
c) On completion of the build, you can double-click any of these messages to open the corresponding

source file at the appropriate line.
2. To build a single program or a folder, follow these steps:

a) In the Project pane, expand the project tree so that the required source program or folder is visible.
Click the program icon or the folder to select it then right-click and select Build.

22 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

b) The IBM AD Build Client Message window displays the file name and log messages that are
created during the build process. Information about the file and its internal relationships is created
and placed into the repository.

3. To build a batch of selected files, follow these steps:
a) 1. In the Project pane, expand the project tree so that the required source programs and folders

are visible. Click the programs and folders that you want to include in the build process then right-
click and from the menu, select Build.

b) 2. Alternatively, for large batches of files you can create a *.txt file that contains the list of
resource files that you want to build and then use the Build Imposed Selection option from the
project node menu to load that file.

c) Browse to the location of the *.txt file then click Load to load its contents. The *.txt file must
contain the FULL PATH to each resource file on a separate line. Extra syntax indications for the
*.txt file are also available. After the file is loaded, the resource files list is displayed. Click OK to
start the build process. The Messages window displays the file names and log messages that are
created during the build process. Information about the files and their relationships is created and
placed into the repository.

4. To update the project after several sources are changed:
a) When several sources are changed, the easiest way to update the project repository is to use the

Make option. Run Make by selecting Build / Make Project or by pressing F7. Make works in the
following way: for each source, IBM AD Build Client compares the last modified date with the date
on the disk and decides whether an update is necessary for the source. This step is called
verification.

b) 2. A Build is ran only for the sources that are chosen in the verification step.
c) 3. A summary of the updated sources is displayed in the Message pane.

5. To update files from mainframe library: to make sure that you have the current version of the
resources that are brought to your project from mainframe use Update Modified Mainframe Members
function from the project menu or select Update Modified Mainframe Members from Build menu.

6. To build only the updated resources – Make: to make a build exclusively with the modified resources
use Make option. Click Make from the toolbar, alternatively you can select Make from Build menu.

Note: If you start a Build on a project where other users logged in, a warning message appears
indicating which users are connected to the project. You need to confirm the operation.

If another user activates a Build while you are logged in to a project a warning message appears urging
you to close the project and wait for a notification that is sent to all users when the build process is
completed. During the Build process, the project is locked and cannot be accessed by any user. After
the Build is successfully completed, a notification is sent to all users logged in to the project.

Chapter 4. IBM AD Build Client 23

It is possible that the Make process might take a long time during which you cannot use the
application. If you need to use the application, you can run the Make process in the background. To
force the Make operation to run in the background, follow the steps:

a. Click Start, select Run then type cmd followed by ENTER to open the command window.
b. Go to the folder where your IBM AD Build Client is installed and locate
IBMApplicationDiscoveryBuildClient.exe file. Drag the
IBMApplicationDiscoveryBuildClient.exe file into the command window then enter /? and
press ENTER. A window is displayed containing detailed instructions about how to make a specific
process to run in the background. To make the Add files operation to run in the background, follow
the displayed steps.

Updating Projects

About this task

You can update a project in two ways: manually or automatically. The process of manually updating a
project is described as follows. For details on the automatic process, see “V. Setting up Automatic
Updates with Windows Scheduler” on page 84. If you want to update the project manually, this
procedure takes only two steps from the project menu only.

Procedure

1. Update Modified Mainframe Members.
This action checks for all project members that originated from the mainframe, if a new version of their
source is available.

All sources that are brought from the mainframe have data about their mainframe origin and last
update time, which is stored in the IBM AD repository for the project.

For sources that were brought from Endevor, this action checks against Endevor if a new version for
the file is available, since the last retrieval date. If a new version for the file is available, the member is
brought to the mapped virtual folder that matches the Endevor library.

For PDS members, IBM AD Build Client checks the file dates on the mainframe against the last update
date from IBM AD repository. If the member on the mainframe is newer, it gets updated on the PC
folder that matches the PDS name.

2. Make
This action effectively updates the IBM AD repository with the information relevant to the modified
sources, and keeps it up to date with the code in the sources on the mainframe.

Make builds a small subset of the whole project, as an incremental build step after which the full
project repository is up to date with the minimal effort needed.

This action starts with checking all the project members on the PC disk folders against their last
recorded update dates on the last build time that is stored in the IBM AD repository for the project.

If a file on the disk is newer than the information recorded in the database, then the file is part of the
Project Make process that is an incremental build. If the newly updated files are programs or jobs,
then they are added to the list of components that must be added to the programs/Jobs to be built in
the Make process.

If the newly updated files are copybooks, then IBM AD Build checks in the repository for all programs
that copy these files, and these programs are added to the programs to be built in the Make process.

If the new updated files are JCL PROCs, or JCL Include Files, or JCL Control files (PARMLIB files) then
IBM AD Build checks in the repository for all JCL Jobs that use these files, and these Jobs are added
to the programs to be built in the Make process.

After this stage, IBM AD Build runs a build for the programs and Jobs that must be updated according
to the previous steps, and after these components are built a summary of the number of updated
components appears on the Make log.

24 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

The Make log, just like any Build log, is saved to the disk under the project folder, with the Make date
time. This method allows viewing past Make results and updated components at any time.

You do not need to do anything on IBM AD Build Configuration for this update of Endevor and PDS
members.

For the CA7 manual update, the way to start the CA7 Data retrieval is by using the IBM AD Build
Configuration, by using Querry Environment > CA-7 Workload Automation option.

Synchronize Mainframe Members
The Synchronize Mainframe Members feature allows the user to specify whether IBM AD Build must
update against specific libraries, where to add/remove the related members in/from the project (that is,
which virtual folder to use) and also which type of members IBM AD Build must use when you add
members. The basic assumption is that the specified libraries do not contain members that do not need
to be added even though they are there.

The Synchronize Members action is run by using a configuration file that specifies what members of what
type to be brought into which mapped virtual folder of the project. When you run Synchronize Members
on a project, only the members that belong to libraries specified in the configuration file for this particular
project is synchronized.

The Synchronize Members feature is activated from IBM AD Configuration Server. For more
information, see https://www.ibm.com/support/knowledgecenter/en/SSRR9Q_5.1.0/
IBM_AD_Configuration_Server_User_Guide_OUT_KC/fillingthebuildclientconfigurationpage.html.

For details on the syntax of the configuration file and an example, see “Appendix 3 - Synchronize
Members Configuration File Examples” on page 91.

After the members’ synchronization process is finished, use Make to ensure that the analyses you ran are
done on the current version of the mainframe sources (updated, added, or removed).

ChangeMan – IBM AD Validation Process
This feature is relevant only for ChangeManIBM ZMF users and has as must have prerequisites: IBM AD
Validation Server and IBM AD Connect for Mainframe.

To have this feature up and running, IBM AD Validation Server must be installed and configured. For
more information, see STEP 4. (Optional) Configuring IBM AD Validation Service.

If only downloading or synchronizing the mainframe members from ChangeManIBM ZMF is needed, IBM
AD Validation Server is not required. IBM AD Validation Server provides coding rule enforcement via
synchronization with ChangeManIBM ZMF when a member is staged. Before a source file is staged, you
can automatically validate the source code to a certain set of coding rules.

The validation process works as follows.

1. Compile a member in ChangeManIBM ZMF (Cobol Program, Assembler Program for example).
2. IBM AD Validation Service receives an indication that a certain program, part of a package within an

application is compiled.
3. IBM AD Validation Service triggers IBM AD Build Client in background mode for the following actions:

Synchronize and Build selection.
4. The Synchronization process is described as follows:

A ChangeManIBM ZMF validation request after is processed by IBM AD Connect for Mainframe
contains the program name to be validated and all it's include files. The requested line contains also
the PDS library names and their corresponding members of the staged ChangeManIBM ZMF package.
The required mainframe members are downloaded from the PDS libraries in batches and contain
multiple validation requests.

In the synchronization process, the ProjectsMapping.txt configuration file is used. However, the
projects that are present in this configuration file must have a valid z/OS connection, with IP and port

Chapter 4. IBM AD Build Client 25

https://www.ibm.com/support/knowledgecenter/en/SSRR9Q_5.1.0/IBM_AD_Configuration_Server_User_Guide_OUT_KC/fillingthebuildclientconfigurationpage.html
https://www.ibm.com/support/knowledgecenter/en/SSRR9Q_5.1.0/IBM_AD_Configuration_Server_User_Guide_OUT_KC/fillingthebuildclientconfigurationpage.html
https://www.ibm.com/support/knowledgecenter/en/SSRR9Q_5.1.0/IBM_AD_Installation_and_Configuration_Guide_OUT_KC/ConfiguringIBMApplicationDiscoveryValidationServer.html

numbers, which is attached and configured. These projects must be used exclusively for validation
purposes.

5. The Build Selection process is described as follows:

Build Selection process is optimized in the validation context, by allowing multiple instances of IBM
AD Build Client to be launched in parallel so that the validation of large batch of files to be faster. The
degree of parallelism is configurable in the ParallelValidationParameters.txt configuration
file. The project names that are used exclusively in the validation context for Build Selection are
needed to be written down in ProjectsMappingParallelBuild.txt configuration file. Based on
the load and the two configuration files, several programs are build on a certain instance of IBM AD
Build Client.

To build the programs that are added to the project, the include search paths needs to contain the
paths of the include files that are detected in the previous step.

Remember:

• On a certain IBM AD Build Client instance the programs are build sequentially, while IBM AD Build
Client is launched in parallel on different projects.

• Before the build starts, the project's repository is cleared so these projects cannot be used for
analysis. Compiled data that is added in the repository is only needed to generate a validation report
on the built programs.

• The Build Selection projects do not have the requirements of the Validation projects, but it is
required to have the virtual folders from FoldersMapping.txt configuration file, as the programs
are added in the virtual folders based on their types.

6. After the build selection process finishes, IBM AD Validation Service starts to generate Rules Based
reports for the program that was previously staged. IBM AD Validation Service is configured to have
different weights for the rules, each rule that is infringed has a value that is defined by the user in the
IBM AD Validation Service configuration.

7. Return of the max weight value to ChangeManIBM ZMF. After the report is generated and the
maximum weight value is calculated, it is returned to the IBM AD Connect for Mainframe that further
passes this information as follows:

• To ChangeManIBM ZMF in user option 0401.
• In the user’s terminal as a message (where user is the one that initially staged the Cobol Program in

ChangeManIBM ZMF). The messages sent to the terminal can be configured in IBM AD Validation
Server in the CompletionCodeVsMessage.txt configuration file (Refer to IBM AD Installation and
Configuration Guide for details). In the situation when there’s a weight that is not configured in the
previous configuration file, then the user sees in the terminal the message error in flow and
IBM AD Validation Server logs must be investigated for further details.

The enforcement part from the coding rule enforcement syntagm is developed by the ChangeManIBM
ZMF admin. ChangeManIBM ZMF can be configured, based on the returned code, to prevent a package
with programs that are violating the coding rules from being staged.

8. Default max weight values and return codes that are currently supported by IBM AD Validation process
and IBM AD Connect for Mainframe when you send the information to ChangeManIBM ZMF:

• 0 - converted to VPAS and sent to ChangeManIBM ZMF in user option 0401.
• 4 - converted to VWRG and sent to ChangeManIBM ZMF in user option 0401.
• 8 – converted to VFAL and sent to ChangeManIBM ZMF in user option 0401.

Any other values (except 99) – converted to NA and sent to ChangeManIBM ZMF in user option 0401.

Return Code 99 – converted to DISS and sent to ChangeManIBM ZMF in user option 0401. This code is
a special return code that is sent only for the situation when something went wrong in the Validation
Process flow (such as synchronize failed, build selection that failed, or the report cannot be
generated).

26 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

Display Build Results
On completion of the build process, you can view the information that was collected and stored in the
IBM AD Build Client project repository. Functions that can be accessed at this stage include viewing the
application’s source files. For more information, see “Viewing Source Programs” on page 45.

CICS CSD Information Handling
Online programs that run under CICS require access to external data sources, such as files, tables, and
queues, cannot rely on jobs to perform the mapping to physical data source entities. CICS provides a way
to define such mapping and saves the mapping information in the CICS System Definition (CSD) file.

To obtain CICS CSD information, the user can choose either of the following two methods:

• Using IBM AD Connect for Mainframe
• Using an exported CSD report

It is recommended to choose only one method to obtain CSD information in a project. For example, if the
CSD information is obtained by using IBM AD Connect for Mainframe, and afterward the user decides to
use an exported CSD report, the previous CSD information is automatically deleted. For more information,
see “Deleting data from the repository” on page 28.

Using IBM AD Connect for Mainframe

When IBM AD Connect for Mainframe is used, the obtained CSD information is stored in the following
MFCICS tables: MFCICSFile, MFCICSGroup, MFCICSGroupVsEntity, MFCICSGroupVsEntityLinks,
MFCICSInfo, MFCICSInfoFiles, MFCICSList, MFCICSListVsGroup, MFCICSMap, MFCICSProgram,
MFCICSTransaction, and MFCICSTransactionPerformance.

The information from the MFCICS tables, of the related database, is shown in graphs, reports, and usages
in IBM AD Analyze.

Using an exported CSD report

When a CICS administrator wants to use an exported CSD report, a CICS utility, called DFHCSDUP, is used
to extract information out of CSD. The result is a report that is generated by the LIST command of the
DFHCSDUP utility.

The CICS administrator needs to carefully decide which parameters are used when the DFHCSDUP utility
is invoked. The format is as follows:

 .-All--------------------.
>>-LIst--+------------------------+--+---------+---------------><
 +-Group--(--groupname--)-+ +-Objects-+
 '-LIst--(--listname--)---' '-Sigsumm-'

In some cases, a CICS application uses a specific LIST. It is recommended to have a single application in
a specific project and to use the appropriate list name when you run the utility. For example, LIST
LIST(listname) is preferred instead of LIST ALL OBJECTS.

When the user specifies LIST ALL, the CSD report is parsed to save all the lists in the repository. In this
case conflicts can occur. For more information, see “Conflict resolutions” on page 28.

The report is added to an AD project as a CSD type of file. The build process parses the file and stores the
information in the MFCICS tables.

CSD report parser

The CSD report parser collects the following information:

• CICS region name.

When an exported CSD report is used to obtain CSD information, the CICS region name represents the
name of the report file. The region name is specified in the CICSName column of the MFCICSInfo table.

• The list of the CICS LIST components.

Chapter 4. IBM AD Build Client 27

• The list of the CICS GROUP components and their relationship to the parent LIST.
• The list of the following CICS items:

– Files
– Map sets
– Programs
– Transactions

Important:

• If a group is not related to any list, it means that the group is not included in the group lists, specified by
the CICS system initialization parameter GRPLIST, that CICS installs at cold start. This Orphan Group is
excluded from the parsing and the resources contained by this group are not saved in the repository.

• The parser saves the first mapping relation encountered and ignores the others, when transaction is
mapped to multiple programs.

After parsing the CSD report, the following information is used in IBM AD Analyze:

• The mapping between transaction and programs. The values are stored in the MFCICSTransaction table.

Important: Only programs referred (that exists or are used) in the current IBM AD Build Client project
are taken into account, in the mapping relation.

The mapping is used/visible in analysis like:

– Program/Transaction Callgraph
– Program Flow
– Backward/Forward Call Chains reports
– Explore project as CICS Transaction, Resource Type

• The mapping between CICS files and their related dataset names, similar as dataset mapping in batch
applications. The values are stored in the MFCICSFile table.

Important: Only files used in existing programs in the current IBM AD Build Clientproject are taken
into account, in the mapping relation.

The mapping is used/visible in analysis like:

– Dataset Record Structure report
– Dataset Usage in Programs
– Explore project as dataset, Resource Type

Deleting data from the repository

Deleting information from a previous region when querying a new one ensures the repository that has
information from a single region each time. Whenever an exported CSD report or IBM AD Connect for
Mainframe is used to import data all previous data from the repository is deleted. The user needs to
consider that:

• All lists, inside the report, are considered for the name resolution.
• The region name is the CSD report file name.

Conflict resolutions

Multiple lists

There is the case when a transaction name is mapped to a program, in one list, and to another program, in
another list. The CSD parser saves the information that is found in the first list and ignores the other
mappings, from the other lists.

28 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

Multiple regions

In the context of an application analysis, do not store information from multiple regions in the same
repository. The user is advised not to use more than one CSD report per project. It is not recommended to
use the CSD report and retrieving operation information from IBM AD Connect for Mainframe in the same
project. The IBM AD Build Client keeps the information from a single CICS region, based on the last IBM
AD Connect for Mainframe action or CSD report parsing. The region is imported either by IBM AD
Connect for Mainframe or by the CSD report.

Extensibility

Preprocessing Extensibility

In-house support preprocessors allow customers to view their familiar source code before preprocessing,
while having AD parse the unfamiliar source code after preprocessing. Language preprocessors (also
known as precompilers) are used to convert non-standard COBOL (for example) or non-COBOL code
embedded in COBOL, into a form that the compiler can process. A non-integrated preprocessor takes as
input a source file (defined as before files) reads and parses it then produces a modified source file
(defined as after files) which is then passed as input to the COBOL compiler.

Note: The preprocessing extensibility feature allows IBM AD users that have their own COBOL
preprocessor to see in the AD analysis the unprocessed sources.

IBM AD Build Client can analyze COBOL, PL/I and ASM applications that use preprocessors.

In order to access the Preprocessing Extensibility feature, there is an option on the interface after the
project creation, named Enable handling of before and after preprocessed source code that will create
the following required folders.

• New folder for before files named PreProc Before.
• New folder for metadata files named PreProc MetaData.
• New folder for config files named PreProc Config.

To enable the Preprocessing feature, right click on folder tree > select Settings > click Extensibility
tab. For more details, see “Adjusting Settings” on page 12.

The folders are added as an option after the project is created, so those users not using preprocessing will
not get confused.

Additional to the files above, after files must also be added. The after files will be added in the folder
corresponding to their type (such as Cobol, PL/I, Assembler).

Before Files

These files represent the user's original resources.

Metadata Files

The metadata files map the before files with after files. These files must have the same name as the files
to be compiled and the extension specified in the configuration file. The metadata file will have a JSON
format. For details on the syntax of the JSON file and an example, please see “Preprocessing Extensibility
Examples” on page 95.

The following elements from the JSON file, are explained below:
info

Contains information about the json format.
version

Version of the format.
metadata

An array that contains metadata elements for the before/after file pair.

Chapter 4. IBM AD Build Client 29

pathType
Specifies whether the before, after, and copybook paths are set in mainframe format or local PC/
network paths. Valid values for this attribute are MF (for mainframe path format) and PC (for local/
network path format).

beforePath
Path to the original file, before the preprocessing process.

afterPath
Path to the expanded file, after the preprocessing process.

Tip: The beforePath and afterPath can be specified either in local/network path format or in
mainframe format. For the mainframe format, only the PDS format is supported: libray_name
(member_name). If the users use Changeman or Endevor to retrieve the sources, local network paths
are required to be specified in the beforePath and afterPath values.

diffResolution
An array containing lines/columns mappings between the beforePath and afterPath, mapping
established by the preprocessor.

beforePos
The corresponding position in the original file.

afterPos
The corresponding position in the expanded file. A position is defined with the following attributes:

• startLine - start line of the position.
• endLine - end line of the position.

If lines from a copybook exist in an after file, the following elements must be added in the corresponding
metadata file:
type

Specifies if the lines in the after file are from a copybook. This element is required only when the lines
in the after file are from a copybook; the only supported value is INCLUDE.

path
Specifies the path of the copybook that the lines come from. It can be specified in the local path or
mainframe format.

includeStmtPos
Contains the following two elements that specify the include command position.
includeStmtPath

Specifies the path of the before file that includes the copybook.
includeStmtLine

Specifies the line number of the include command in the before file.

Note: The file will be added in the PreProc MetaData separate virtual folder under the project, so it can
be updated from the mainframe if required. For more details about metadata files, see section
Extensibility preprocessing JSON schema in appendix 3.

Metadata Files - Error Cases Behavior

The format and content validation will be performed at build start on the corresponding after file.

• If the JSON validation fails, the build on the file is stopped and the data in the database is cleared.
• If the beforePath or afterPath values in the JSON file do not exist on the disk, the build on the file is

stopped and the data in the database is cleared.

Configuration Files

The configuration file will contain mappings between the folders of the before, meta and after files and the
extensions for each type. When compiling a file from folder X, a search is initiated for a metadata file in
the meta folder corresponding to folder X. The metadata file must have the same name as the file being
compiled and the extension specified in the configuration file.

30 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

Important:

1. The file will be added in the PreProc Config separate virtual folder under the project, so it can be
updated from the mainframe if required.

2. The paths in the configuration file must be specified in local/network format, not mainframe format.
3. Lines in the configuration file can be commented by adding * at line start.

For details on the syntax of the configuration file and examples, please see “Preprocessing Extensibility
Examples” on page 95.

Configuration Files - Error Cases Behavior

• Configuration file format related errors.

The configuration file format will be validated at build start:

1. If the configuration file format is incorrect, the build will not be started nor will affect the data in the
database.

2. If several files of different types are built in the same session (PL/I, Assembler, Cobol and JCL) while
the configuration file format is incorrect, the build for JCL will not be affected.

3. If several configuration files are used, out of which some are incorrect, the behavior is similar to case
1 and error messages will be generated for each incorrect configuration file.

• Other types of errors.

1. If the after file is present in the after folder while the meta files and before files are missing from their
specific folders (meta folders, before folders), an error is logged without saving anything in the
database about the after file.

2. If the after file and before file are present in the their specific folders, while the meta file is missing
from the meta folder, an error is logged without saving anything in the database about the after file
and before file.

3. If the after file and meta file are present in the their specific folders, while the before file is missing
from the before folder, an error is logged without saving anything in the database about the after file.

Note:

1. If two types of resources (requiring / not requiring preprocessing) are available to a project, they must
be organized in separate locations on the disk. In case this rule is not applied, the sources that do not
require preprocessing will not be built.

2. The validation for the configuration file checks that the specified folders do exist on the disk.

Feature Known Behavior

If for a project, both metadata file and configuration file are used, the Make Project functionality will not
be applied for these files. For more information about Make Project functionality, please see “Building
Projects” on page 22.

API Call/Macro Extensibility

The Extensibility - API feature allows customers to access an analysis that reflects their usage of in-
house or 3rd party APIs, by using a configuration file, instead of waiting for development support. Using
JSON configuration files, the user describes how each API\Macro call is interpreted by IBM AD.

IBM AD Build Client supports API calls only for:

• COBOL and PL/I programs
• JCL jobs

For more information about the JCL jobs, see section “JCL Call Extensibility Examples” on page 110 in
Appendix 4.

API call events can be handled as one of the following types of calls:

• Data access calls

Chapter 4. IBM AD Build Client 31

• Inner application program calls
• Cross application calls

Important: The JCL call events can be handled only as inner application program calls.

The following statements are supported for API calls:

• CALL PROGRAM
• EXEC CICS LINK PROGRAM
• EXEC CICS XCTL
• EXEC PGM (supported only for JCL calls)

To enable the API macro extensibility feature, click Project > Settings > Extensibility, and then select
the Enable API/Macro handling by using a configuration file check box. After you click OK, a folder with
the name API Config is created.

In the API Config folder, three types of JSON configuration files can be added:
API Config

Specifies the API calls to be analyzed, the API call parameters, and for which one of these
parameters, the values are needed.

User Exits Config
Contains a list of API calls and the path to a user exit.

The user exit is a JSON file or a utility that you must create. It contains new resolutions for the API
calls. For more information about the user exit JSON files, see section “API/Macro Call Extensibility
Examples ” on page 98 in Appendix 4.

API Dependency
Allows the user to specify a new type of API extension that can be triggered regardless of any source
code. By using dependency, the following mappings can be defined:

• a mapping between programs and generic transactions
• a mapping between programs and generic maps

For more information about the API Dependency, see section “Dependency Extensibility Examples”
on page 114 in Appendix 4.

The resolution of the API calls is made by using a module that is called the API Resolver, which uses the
User Exists Config JSON configuration file.

Note:

• After each compilation, a JVME_Post_Compiler.log file is created in directory C:\Users
\User_Name\AD\comp\log.

• The API Config configuration file is validated before each build event and in case errors are found, an
error message is displayed and the build stops.

The folder is added as an option after the project is created, so users that do not use the API Macro
feature will not get confused.

Annotations

Starting with IBM AD V5.1.0 release, the API Resolver can add annotations on resolutions. The
annotations are present in the resolution.json file. For more information, see “JCL Call Extensibility
Examples” on page 110 and “Dependency Extensibility Examples” on page 114.

Note: Make sure that Annotations Database configurations from IBM® AD Configuration Server are set.
For more information, see Configuring the Annotations Database chapter in IBM® AD Configuration Server
User Guide.

Examples of annotations that are added by using the "annText" and "annKeyword" parameters:

• "annText": "ANNOTATION2" - specifies the text that users want to add as annotation.

32 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

https://www.ibm.com/support/knowledgecenter/en/SSRR9Q_5.1.0/IBM_AD_Configuration_Server_User_Guide_OUT_KC/configuring_the_annotations_database.html

• "annKeyword" : "API_RESOLUTION" - specifies the annotation keyword used by the user to
identify specific annotations.

Error Cases Behavior

For any project that contains COBOL sources, before any Build, Build Selection or Make processes, the
configuration file validation starts automatically. You can also manually start the validation
sequence, by right click JSON file > Validate.

1. If the JSON file is valid, the following message is displayed:
Validation of the configuration file from 'API Config' folder has succeeded.

2. If the user tries to upload more than one API Config type file, the following error message is
displayed:
Only one configuration file of each type can exist in "API Config" folder.

3. If the JSON file is not valid, an error message is displayed. The error message varies, depending on the
error type:

a. If an empty JSON file is added to the project, the error message is:
Error parsing data for API Configuration file. Reason: The configuration file from 'API Config' folder is
empty.

b. If the JSON file has a syntactical error in its structure (ex: a missing bracket, an extra comma, and
so on) the following error message is displayed :
Error parsing data for API Configuration file. Reason: At line (line number), column (column number)

Note: Depending on the syntactical error, Reason can be: not a value, not an array, not an object,
not a pair, no colon in pair, not a string.

c. If one of the keys of the JSON file or their values are incorrect, the following error message is
displayed:
Error parsing data for API Configuration file. Reason: Key '%s' is invalid or has invalid value.

d. If any mandatory key is missing for the JSON file or its value is unsupported, the following error
message is displayed:
Error parsing data for API Configuration file. Reason: Key '%s' does not exist or has unsupported value.

e. If the Api/Macro feature is enabled, but no JSON file is added to the project, the following error
message is displayed:
Error parsing data for API Configuration file. Reason: The configuration file from 'API Config' folder is
missing.

f. If the user sets same values for more than one apiKey, the following error message is displayed:
Error parsing data for API Configuration file. Reason: The key has a duplicated value.

Note: Same behavior occurs for setting same values for more than one Program "Name" or
Parameters "label".

g. If an error that is not covered by the previously documented situations is encountered, the
following default error message is displayed:
Unknown error type.

Update API Resolutions usage using CLI

IBM AD Build Client can be invoked in batch mode to update API Resolutions by using the following
command:

IBMApplicationDiscoveryBuildClient /uar1 ProjectName

Where:

• /uar1 is the parameter that is used to invoke the update of API Resolutions.
• ProjectName is the name of the project where the API Resolutions process is triggered.

Note:

Chapter 4. IBM AD Build Client 33

• It is mandatory to have the API Extensibility feature enabled in IBM AD Build Client . To enable the
API Extensibility feature, go to IBM AD Build Client > Project > Settings > Extensibility > Enable
API/Macro handling by using a configuration file.

• The Update API Resolutions must be used for the situation when the API Resolution File is modified,
so the resolutions must be updated in the repository but without running a full build on the project
(which might be time consuming).

The logs for the Update API Resolutions usage are available under: Project's Folder >
UpdateApiResolutions_timestamp.txt.

The action that is performed in background, use cases and best practices are also available in HTML
format.

1. Click Start, select Run then type cmd to open the command window.
2. Go to the folder where your IBM AD Build Client is installed and locate
IBMApplicationDiscoveryBuildClient.exe.

3. Drag IBMApplicationDiscoveryBuildClient.exe into the command window then type /? and
press ENTER.

As a result, a web page is displayed containing detailed information.

Configuring the PL/I Preprocessor

Before you begin
Make sure that IBM® AD Build Client is up and running, and a project is available and can be used.

About this task

When working with the PL/I Preprocessor, you can configure parsing options, which drive the way
preprocessing is executed, environment variables, encoding, the default library, and other settings. The
PL/I Preprocessor configuration options are specified in the PL1PreprocessorInfo.ini file. The file
follows the general format of .ini files where options are specified as key=value. You can access and
edit the file from IBM® AD Build Client.

Procedure

1. Click Project > Settings and select Show the project tree.
2. Select PL1 from the list and click Edit Preprocessor Settings.

The PL1PreprocessorInfo.ini file is displayed in your default text editor.
3. Specify the configuration options to customize the PL/I preprocessor. See “PL/I Preprocessor

Configuration File” on page 34 for details about the configuration options you can set and for an
example of the PL/I Preprocessor configuration file.

PL/I Preprocessor Configuration File

PL1PreprocessorInfo.ini is the PL/I Preprocessor configuration file, which specifies parsing options,
environment variables, and other settings that the user sets when working with the PL/I Preprocessor.

The configuration file is generated when a project is created, and is located in the
<ProjectRootDirectory>\ConfigurationExt\ folder.

The file follows the general format of .ini files where options are specified as key=value.

Sections and groups

Sections denote groups of options that override the options in the previous levels. Sections can be
hierarchical, names of the groups must be separated by /.

Groups are the virtual folders that are created in the project's structure in IBM® AD Build Client.

34 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

Parsing Options

The parsing options drive the way preprocessing is executed. The parsing options are described as
follows:

• opts.blank.chars=<character set>

Specifies the characters that can be used by the preprocessor. By default, space, tab, newline are blank
characters.

• opts.margins=<true/false>

Specifies whether the files can have special margins. If the option is set to true, you must specify both
the left and right margins.

• opts.margins.left=<natural number>

Specifies the left side margin of the files to process, as a column number. Any text to the left of
opts.margins.left is ignored. This option must be specified if opts.margins=true.

• opts.margins.right=<natural number>

Specifies the right side margin of the files to process, as a column number. Any text to the right of
opts.margins.right is ignored. This option must be specified if opts.margins=true.

• opts.stringDelim=<character set>

Specifies the characters that can be used in text as string delimiters instead of the default ".
• opts.or.chars=<character set>

Specifies the characters that can be used as the OR operator in preprocessor directives.

Note: opts.or.chars is also used by the concatenation symbol. For example, if ! is used as the OR
operator, then concatenation symbol is !!.

• opts.not.chars=<character set>

Specifies the characters that can be used as the NOT operator in preprocessor directives.
• opts.extra.lower=<character set>

Specifies the extra lowercase characters that can be used in preprocessor identifiers.
• opts.extra.upper=<character set>

Specifies the extra uppercase characters that can be used in preprocessor identifiers.

Note: opts.extra.lower and opts.extra.upper must have the same length. Characters are
matched based on their position.

• opts.include=<non-spaced set of characters>

Specifies a custom include directive.

Note: <character set> is a set of characters that are surrounded by any of the following pairs of
separators: {} () >< `` .. ~~ || ++ == __.

• opts.library.extensions=<comma-separated list of names>

Specifies the extensions of the PL/I includes that are used by the user. For example, if the includes
have .pli or .inc extension, these mentioned extensions are written in the
opts.library.extensions option.

• opts.caseInsensitive=<true/false>

When the option is set to true (default), the compiler option CASE(UPPER) is implemented. When it is
set to false, the compiler option CASE(ASIS) is implemented.

Other settings

• source.encoding=<valid encoding>

Chapter 4. IBM AD Build Client 35

Specifies the encoding that is used to parse files. The default is UTF-8. Valid encoding names are listed
in List of supported encodings.

• default.library=SYSLIB

Specifies the default library that the PL/I preprocessor looks for includes.
• internal.include.flat.layout=<true/false>

When the option is set to true, it forces the preprocessor to ignore the library in an include directive.

Environment variables do not have a predefined value. Subsequently, a value can be assigned to one of
these variables. A variable has the following format:

vars.VARIABLENAME='value'

Configuration file example

[PL1]
source.encoding=UTF-8
opts.include=++INC
opts.stringDelim={"}
opts.extra.lower={@\#$}
opts.extra.upper={@\#$}
opts.margins.right=72
opts.margins.left=1
opts.margins=true
vars.MODE=BATCH
[PL1/Subfolder1]
opts.include=--TST
opts.stringDelim={%}
vars.MODE=CICS
[PL1/Subfolder1/Subfolder2]
opts.margins.right=20
opts.margins.left=7

The example configuration file contains folders in hierarchy. If [PL1/Subfolder1] and [PL1/
Subfolder1/Subfolder2] options are used, the actual options are compiled based on hierarchy,
overwriting the parsing options present in [PL1]:

opts.include=--TST
opts.stringDelim={%}
vars.MODE=CICS
opts.margins.right=20
opts.margins.left=7

Preparing repository using DDL scripts for Db2 on z/OS projects

Creating Db2 Database Using DDL Script

About this task

A Data Definition Language (DDL) script can be used to create a Db2 database. The
DB2_CreateObjects.sql DDL script is located in the <IBM ADDI Installation Folder>\IBM
Application Discovery Build Client\Bin\Release\DBScripts folder.

Procedure

1. Go to <IBM ADDI Installation Folder>\IBM Application Discovery Build Client
\Bin\Release\DBScripts and open DB2_CreateObjects.sql by using a text editor.

2. Locate and set the following parameters in the entire script.

• CREATE DATABASE <enter an appropriate name for the database>
• SET CURRENT SCHEMA = 'enter an appropriate name for the schema'
• SET CURRENT PATH = 'enter an appropriate name for the path'

36 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html

• SET CURRENT FUNCTION PATH = 'enter an appropriate name for the function
path'

Note: The names of the database, schema, path, and function path must have a maximum length of 8
characters. Special characters cannot be used.

3. Run the script.
4. After you create a Db2 database and schema, you can attach it to a new created project. For more

information, see “Creating a Project” on page 10.

Results
The desired Db2 database is created.

Deleting Db2 Database Using DDL Script

About this task

A Data Definition Language (DDL) script can be used to delete a Db2 database. The
DB2_DeleteObjects.sql DDL script is located in the <IBM ADDI Installation Folder>\IBM
Application Discovery Build Client\Bin\Release\DBScripts folder.

Procedure

1. Go to <IBM ADDI Installation Folder>\IBM Application Discovery Build Client
\Bin\Release\DBScripts and open DB2_DeleteObjects.sql by using a text editor.

2. Locate and set the following parameters in the entire script.

• SET CURRENT SCHEMA = 'enter the name of the schema'
• SET CURRENT PATH = 'enter the name of the path'
• SET CURRENT FUNCTION PATH = 'enter the name of the function path'

3. Run the script.

Results
The desired Db2 database is deleted.

Creating Annotations Database Using DDL Script

About this task

A Data Definition Language (DDL) script can be used to create Annotations database. The
DB2_CreateAnnotationDB.sql DDL script is located in the <IBM ADDI Installation Folder>
\IBM Application Discovery Build Client\Bin\Release\DBScripts folder.

Procedure

1. Go to <IBM ADDI Installation Folder>\IBM Application Discovery Build Client
\Bin\Release\ and open DB2_CreateObjects.sql by using a text editor.

2. Locate and set the following parameters in the entire script.

• CREATE DATABASE <enter an appropriate name for the database>
• SET CURRENT SCHEMA = 'enter an appropriate name for the schema'
• SET CURRENT PATH = 'enter an appropriate name for the path'
• SET CURRENT FUNCTION PATH = 'enter an appropriate name for the function
path'

Note: The default name of the database, schema, path, and function path is EZANNOT. The default
name can be changed and can have a maximum length of 8 characters. Special characters cannot be
used.

Chapter 4. IBM AD Build Client 37

3. Run the script.
4. After you create the Annotations database, you must add the related information in IBM Application

Discovery Configuration Server, under Environment > Configurations > Annotations Database. For
more information, see Configuring the Annotations Database.

Results
The desired Annotations Database is created.

38 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

https://www.ibm.com/support/knowledgecenter/en/SSRR9Q_5.1.0/IBM_AD_Configuration_Server_User_Guide_OUT_KC/configuring_the_annotations_database.html

Chapter 5. IBM AD Build Client Reference

Following chapters contain detailed information about all aspects of IBM AD Build Client application. It
describes the IBM AD Build Client main screen, the menus, and toolbar options. Furthermore, it contains
a complete description of all the IBM AD Build Client operations.

Main Screen
The main screen that opens when the program is started contains the following elements:

• Title Bar.
• Menu Bar.
• Status Bar.
• The Project pane on the left between the toolbar and the status bar.
• The Display area on the right between the toolbar and the status bar.
• The Output pane across the width of the screen under the Project pane and Display area.

Main Menu
IBM AD Build Client operations are controlled by choosing commands on the main menu and menus,
clicking icons on the toolbar, and keyboard shortcuts. The Main Menu commands are summarized in the
following table. Equivalent keyboard shortcuts, when available, are also listed.

File Keyboard
shortcut

Description

New Text File CTRL+N Creates and opens a new text file.

New Project Creates and opens a new project.

Open CTRL+O Opens the Windows Open dialog box, from which any file can be
selected and opened.

Close Closes the active window.

Open Project Selects and opens an existing IBM AD Build project.

Save Project Saves the current project.

Close Project Closes the current project.

Save CTRL+S Saves the active window.

Save As Saves the active window under a new name.

Save All Saves all components of the project.

Print Setup Opens the Windows Print Setup dialog box.

Recent Files Lists the last six files opened.

Recent Projects Lists the last six projects opened.

Exit Exits IBM AD Build.

© Copyright IBM Corp. 2010, 2019 39

Edit Keyboard
shortcut

Description

Paste CTRL+V Pastes the clipboard text to the cursor position.

Find CTRL+F Finds the string that is specified in the Find command.

Find next F3 Finds the next occurrence of the string that is specified in the
previous Find command.

Go To Go To Places the cursor at the beginning of the specified line number.

View Keyboard
shortcut

Description

Toolbar Toggles on/off the toolbar.

Status Bar Toggles on/off the status bar.

Project ALT+0 Toggles on/off the project pane.

Output ALT+2 Toggles on/off the output pane.

Options Opens Options dialog box where you can specify the output
parameters.

Project Keyboard
shortcut

Description

Add Files Adds files to a folder in the active project.

New Folder Create a folder in the active project and allows specifying the types
of files it contains.

Settings Opens the Settings window.

Build Keyboard
shortcut

Description

Make Project F7 Similar to Build Project, but it creates a build operation on
components of the project that are modified since the last build was
ran.

Build File Builds the current file.

Build Project CTRL+B Builds all files in the active projects.

Stop Build Stops the current build.

Decisions Opens the Decisions window.

Window Keyboard
shortcut

Description

Cascade Arranges windows one behind the other in the display area.

Tile
Horizontally

Displays all windows, arranged horizontally.

Tile Vertically Displays all windows, arranged vertically.

Arrange Icons This option is not currently available.

40 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

Help Keyboard
shortcut

Description

About IBM
Application
Discovery Build

Provides the current IBM AD Build version and information on how
to access technical support.

Main Screen Toolbar
The main screen toolbar icons enable frequently used menu commands to be run without having to
browse through the menu hierarchy. A brief explanation of each is presented in the following table.

Icon Function Menu Bar/ keyboard shortcut
Equivalent

Explanation

New File File / New / Text File Ctrl+N Creates a text file and opens it.

Save File Save File Saves the current file.

Save All File / Save All Saves the current state of the project and
files.

Previous Window N/A Displays the previous window

Next Window N/A N/A

Print File / Print Ctrl+P Prints the selected/displayed file.

New Project File / New / New Project Creates a project.

Open Project File / Open Project Opens an existing project.

Check Project N/A Checks the active selected project for errors.

Build Files Build / Rebuild File (Re)Builds the currently selected files.

Build Project Build / Rebuild Active Project (Re)Builds the active project.

Stop Build/Check Build / Stop Build / Check Stops the current build/check process.

Make Project Build / Make Project Similar to Build, runs a build operation only
on project parts, which are updated since the
last Build was run.

Project Tab
The Project tab displays tree hierarchy of objects in the project. The tree can be expanded or collapsed by
clicking the + or - signs to the left of each node. The type of each branch is identified by an icon and a text
label. In most cases, a node corresponds to a specific line of code in one of the project files and double-
clicking the node causes the source file to be displayed in an edit window with the corresponding code
line highlighted. Right-clicking a node causes a menu to open, which usually contains commands for
displaying the code (similar to the double-clicking the node), for expanding or collapsing the branch
represented by the node, or viewing properties of the object.

The Project tab contains the following nodes under the main project node:

Chapter 5. IBM AD Build Client Reference 41

Node Name Icon Description

File Type
Folder Node

Each file type folder represents a logical container for source files of the
corresponding type that are included in the project. The files list is displayed
when the node is expanded.

COBOL Node Opens the COBOL source file.

Include (Copy)
Node

Opens the Include (Copybook) file

BMS Node Opens the BMS file.

JCL Node Opens the JCL file.

Configuration
Node

Opens a configuration file.

Tab Icons Summary
The following table summarizes the icons that are used in the Project pane:

Icon Explanation

Project

Folder (file type)

Program file

Include file

BMS screen

JCL

Configuration file

Schema (closed)

Schema (opened)

Natural Map file

Copy file

Screen file

Printer file

Object listing / Datasets definition Table definition / Scheduling information / Batch Processes
information

Right Click / Shortcut Menus
When you right-click in different locations in IBM AD Build Client, different menus are available. These
menus are described in the following sections.

42 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

Note: The menus might not appear exactly as described here.

Project Tab Shortcut Menu

The project tab right-click menu contains the following options:

Menu Options Explanation

Add Files Adds files to the folder.

Add All Files
from Folder

Adds all files from the selected folder. For details on how to make this operation that is
run in the background see “Adding Files to Project Folders” on page 16.

Delete All Files
from this
Virtual Folder

Deletes all the files from the current virtual folder.

Add Files from
Mainframe
Library

Adds files to the folder from the mainframe library. Mainframe libraries are available if
IBM AD Connect for Mainframe was used previously, by using the IBM AD Build
Configuration (z/OS), to scan source libraries on the mainframe. For more information,
see “Adding Files From Mainframe Library” on page 21 in Tasks and “Bringing data
from mainframe libraries (PDS Libraries, Endevor, Librarian, Natural)” on page 70 in
z/OS tab from IBM AD Build Configuration.

New Folder Creates a folder in the active project. The new folder can have one file type only, which
is the same or a subset of the parent folder.

Build Builds the selected files and folders.

Delete Deletes the selected folder (only folders, which are not the default ones that are
created at project creation time can be deleted).

Settings... Opens the Settings window, focusing on the folder’s settings.

Expand Expands the folder.

Collapse Collapses the folder.

Properties Displays folder properties.

Project Node Shortcut Menu

The project node right-click menu contains the following options:

Menu Option Explanation

Check Checks for components that are referenced in the project source code, but missing
from the project definition. This option is used to ensure project completeness.

Build (Re)Builds the project.

Build imposed
selection

Builds the selected resources and folders.

Make Similar to Build Project, but only performs a build operation on components of the
project, which are modified since the last build was run.

Update API
Resolution

This option allows the user to run the resolving mechanism of API calls in case that
JSON resolutions, present in the User Exists Config JSON configuration file, have been
modified.

Update
Modified
Mainframe
Members/

Updates the resources that are brought in the project from the mainframe and that are
changed since the last build. If Enable Members Synchronization option is selected,
Update Modified Mainframe Members changes into Synchronize Members. For more

Chapter 5. IBM AD Build Client Reference 43

Menu Option Explanation

Synchronize
Members

information, see “Updating Projects” on page 24 and “Synchronize Mainframe
Members” on page 25.

New Folder Defines a new folder, all file types are available for a folder under the project root node.

Delete Deletes the selected file. When this option is selected, a confirmation message appears
asking you to confirm or cancel the delete operation.

Settings... Opens Settings window, focusing on the whole project settings.

Expand Expands the project tree.

Collapse Collapses the project tree.

View
Repository

This option is not currently available.

Search in Tab
(Ctrl+Q)

Searches within the current tab for the specified string.

Search in Tab
next

Not available in the current version.

Properties Displays project properties.

White Space Shortcut Menu

The White Space menu appears when you right-click anywhere in the white space of the Project pane.

Note: The project tree needs to be collapsed to display the menu.

The white space right-click menu contains the following options:

Menu Options Explanation

Docking View Docks/undocks the pane.

Hide
Workspace /
Hide Window

Hides the Project pane. Use View / Project or Alt-0 to display it again.

Editing Shortcut Menu

The Editing menu contains standard editing commands (Undo, Cut, Copy, Paste) and appears when you
right-click from within a text file (program).

Output Pane
IBM AD Build Client displays progress and error messages in the Output pane. By default, the pane is
docked across the entire width of the IBM AD Build Client main window. It can be undocked by double-
clicking its window border, and docked again by dragging it down. The Docking View toggle option is also
available on the menu. Double-clicking the name of a resource from the Output pane opens the resource
in the Editor.

Output Pane Shortcut Menu

Menu Option Explanation

Copy Copies the selected text in the output pane to the clipboard.

Clear Clears the Output pane.

Hide Hides (closes) the Output pane. Use View / Output or ALT+2 to open it again.

44 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

Menu Option Explanation

Docking View Switches the window between docked and undocked states. In the docked state, the
window is positioned along the entire width of the window (or it is minimized if the
status bar is hidden). When the window is undocked, it behaves as a standard Windows
window.

Save Output
File

Saves the current contents of the Output pane to a file. The standard Windows Save As
dialog box opens for specifying the name and location of the file to be saved.

Go to Error When an error message in the Output pane is highlighted (by clicking it), this menu
opens the corresponding source file in an Editor window at the statement that caused
the error. The file can also be opened by double-clicking the error message directly.

Working with IBM AD Build Client Windows
A number of special purpose windows facilitate user interaction. Some of these windows are initially
docked to the borders of the display area, but they can be undocked and moved, resized, and hidden
(closed). Window names are not shown on docked windows.

Many of the windows have menus that are opened by placing the mouse cursor over the window and
right-clicking. In some cases, different menus appear, depending on the exact position of the cursor in the
window.

The following IBM AD Build Client windows are described in the following sections:

• Decisions
• Editor
• Settings
• Properties.

Viewing Source Programs

About this task

To view the source code for a particular entity, follow these steps:

Procedure

1. Right-click the entity to open a menu, as described in “Right Click / Shortcut Menus” on page 42.
2. Select View Source. An Editor window opens containing the source listing of the entity.

Building Decisions

About this task

IBM AD Build Client’s Decisions mechanism lets you to overcome syntax problems that might occur at
build time in some source dialects. No permanent changes are made to the original code files. Instead,
the change information is stored in the repository, so that when an analysis process requires a source file,
in effect a temporary internal copy of the file with the modifications is used.

Decisions are essentially specifications for Find and Replace operations that can be applied locally (at a
particular location in a specified file) or globally (throughout the application). This method allows for
increased flexibility as decisions can be targeted to specific files.

The folder types that are accepted by the Decisions mechanism are as follows:

• zOS Cobol
• Cobol IDMS

Chapter 5. IBM AD Build Client Reference 45

• DT Cobol Pre-compiled
• Cobol IDMS Record

A decision might be implemented for any number of reasons, for example:

• The effects of modifying transactions can be studied.
• Build errors can be corrected.
• Unsupported COBOL features can be replaced by alternative code.

To define a decision, follow these steps:

Procedure

1. Click Build / Decisions to open the Decisions window. If decisions are defined previously, they are
listed in the window, otherwise the window is empty.

2. In the Decision pane at the upper right part of the window, click the text Click to Add New Decision
(the Decision column) to create a new decision. This pane contains two columns and a row for each
decision. When you click Click to Add New Decision, a new row is added for the new decision.
Overwrite Click to Add New Decision with a name for the decision, and then click in the Replacement
field and select TOKEN or PATTERN from the list menu box.

The replacement type refers to the method that is used for search and replace operations. In this
aspect, IBM AD Build Client follows COBOL copy that replaces the rules. In PATTERN search, the
search string is replaced wherever it appears, while for TOKEN only complete words are replaced. For
example, if the string OLD TEXT is to be replaced by the string SOME NEW TEXT using PATTERN
search, a part of the string BOLD TEXT would be replaced by SOME NEW TEXT resulting in BSOME
NEW TEXT.

46 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

For TOKEN searches, the string to be replaced must contain one word only and only complete words
are replaced. Thus, if OLD is to be replaced by NEW, under TOKEN search the word BOLD would not
be replaced. For TOKEN search, the string OLD TEXT would be disregarded since it comprises two
tokens.

After the replacement mode is selected, a tree diagram of the project will appear in the left pane of the
window (see the next image). If necessary, expand the tree.

3. Enter a description of the decision in the Description text entry box, the string (or token) to be
replaced in the Original String box, and the replacement string in the Replace with box.

4. Expand the project tree in the left pane to show its folders and files. Set the check boxes of the files
that are to be included in the Search and replace operation. Some folders do not support decisions and
therefore, their respective check boxes are disabled. (In the example that is shown before, the
replacements are to be made in all the sources).

5. Click the check boxes next to the file name that is to accept the decision. A check mark appears. The
decision is now attached to the checked file. Repeat for all the files or folders to which the decision is
to be attached.

Additional Decisions

Each decision is represented by a row in the Decision pane, and have its own description, original string,
replacement string, and program tree that specifies the files to which the decision is to be applied.

Information including the date of the last modification to the decision and the user name of the person
who made the modification is displayed.

When you click a row to select it, the information in the other controls of the window changes. The
following figure shows the decision information for two decisions.

Chapter 5. IBM AD Build Client Reference 47

Deleting a Decision

After you define the decisions, they remain active until they are deleted or until all check boxes in the
project tree for the decision are cleared. In other words, if a decision is not associated with any files (all
check boxes in the project tree for that decision are cleared), then the replacement it defines is not
implemented, but the decision is still available for later use. To permanently delete a decision, select it
and click DELETE on your keyboard.

Applying Decisions

After you define or modify decisions, the project (or the files that are affected by the decisions) must be
rebuilt.

Note: A source opened in the text editor does not show applied decisions, since these decisions are
applied only at build time on a temporary copy of the source code.

Using the Editor

About this task

IBM AD Build Client includes an integrated text editor that can be used to view files.

To open a file in the Editor, follow these steps:

Procedure

1. Main Menu > File/Open to open the standard Windows Open File dialog box. Any file can be opened
in this way, including files unrelated to IBM AD Build Client activities.

48 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

2. Double-Click Source File Icons. In the tree diagram of the Project pane, double-clicking an icon that
represents a source code file or statement causes the corresponding file to open in an Editor window,
often with the appropriate statement highlighted.

3. Shortcut Menus. Most menusmenus that are associated with program/statement icons in the Project
pane have a View Source option.

4. • Double-Clicking Compilation Error messages in the Output Pane. If errors occur during a build, they
are listed in the Output pane. Double-clicking the error notification causes the corresponding source
file to be opened in an editor window with the erroneous statement highlighted.

Using the Settings Option

About this task

Use the Settings option to change the default search paths that are used for the build operation to
exclude program components from the build analysis, to set custom component extensions, and to select
different analysis parameters according to the resource type.

To open the Settings window for a resource, follow these steps:

Procedure

1. To open the Settings window for a resource, follow these steps:

a. On the Project tree diagram, right-click the component that you want to exclude from the analysis.
b. In the menu that opens, select Settings. In the Settings window select Show the project tree. The

project tree is displayed showing the selected resource (you can select several resources if
needed).

c. If you select Exclude File(s) from Build, the selected files are excluded from subsequent builds.
The parameter can be set for any individual file in the project, for a set of files within a folder or for
an entire project folder, by selecting the folder node in the tree.

Note: The options that are shown in the Settings window depend on the type of resource selected.
2. To open the Settings window for a project, follow these steps:

a. Select the Project node in the Project pane.
b. Go to Project, then select Settings to display the Settings window as in the following image.

Chapter 5. IBM AD Build Client Reference 49

In the General tab of the Settings window, after the Show the project tree check box is selected, the
following check boxes, fields, or options are available:

Project /
Folder

Check Box / Field /
Option

What it does

Project node Activate LOG file Creates a log file of errors/warnings. This check box is
password that is protected for administrator use only.

Search Paths area Displays the default search paths that are used during the
Build operation. Allows the user to change the default search
paths if needed. When you click Explore, the Search Paths
Order window is displayed. Use the available buttons to
either create an entry, to delete the selected entry, or to
change the position of the selected entry in the list. The build
operation is run in the order set in this window.

All folder
nodes,
individual
resources

Exclude files from
build

Excludes the select files or folder from build operation.

Natural Indent size Determines the column number where the text must start (in
the source code).

Natural Compiler Mode-
Structured mode/
Report mode

Sets either the Structured or the Report mode for the
compiler.

50 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

Project /
Folder

Check Box / Field /
Option

What it does

All include
folders

(Cobol, Natural)
Include Extensions
or Default extensions

Allows the user to enter custom include extensions or use
the default ones.

Data Area (in
Natural
projects)

Data Area file
format- Format 1 or
Format 2

Allows the user to select either Format 1 or Format 2 for the
Data Area resources’ processing. The option that is selected
by default is Format 2.

PL1 PL1 Line Settings-
Line Offset, Free Text
format.

Allows the user to select the column number where the text
must start (in the source code) or choose the Free Text
Format option.

From the Settings window, an IMS DB Environment can be set up for COBOL programs that use EXEC
DLI commands and DL/I calls. Fore more information, see step 4 from Adjusting Settings section.

From the Settings window, select the Using EXEC DLI (IMS related) check box to analyze COBOL
programs with EXEC DLI commands that are present in the project. Fore more information, see step 5
from Adjusting Settings section.

The following check boxes are available in the Extensibility tab from the Settings window:

• Enable API/Macro handling by using a configuration file.
• Enable handling of before and after preprocessed source code.

The Options Window
This function from the View menu opens Options dialog box where you can specify the output
parameters.

Specify the maximum number of output lines, whether warning messages must be displayed in the
Output pane and if the build results must be automatically saved then click OK to apply the options.

The Properties Window
The Properties window displays information about the files in a project. The window can be opened from
the menu of the items in the tree of the Project pane only. The labels and title of the window differ slightly
according to the object type.

Chapter 5. IBM AD Build Client Reference 51

52 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

Chapter 6. IBM AD Build Configuration

You can perform the following actions in IBM AD Build using the Configuration Tool:

• View existing projects.
• Delete a project.
• Rename a project.
• Re-create a repository.
• Upgrade a repository.
• Display the users who are currently using a project.
• Create and configure a z/OS connection to a remote computer.

To open IBM AD Build Configuration, click Start > Programs > IBM Application Discovery Build Client
> IBM Application Discovery Build Configuration.

Viewing Project Information

About this task

To view project information, follow these steps:

Procedure

1. In the IBM Application Discovery Build Configuration window - right-click on the project and choose
Project Information.

2. A window is displayed showing the Project Path, Project Database Connection String, Project
Creation Information, and Authentication Information.

3. If you are working in multi-user mode, under each project a list of users who are currently logged in is
displayed.

© Copyright IBM Corp. 2010, 2019 53

Deleting a Project

About this task

Deleting a project can be done in two ways:

Procedure

In the IBM Application Discovery Build Configuration window.
a) Select the project to be deleted from the list of projects.
b) Right-click to display the menu and select Delete Project.
c) You are asked to confirm the deletion request.
d) If other users are logged in to the project, a warning message appears listing all the users who are

connected to the project.

Renaming a Project

About this task

To rename a project, goto the IBM Application Discovery Build Configuration window and follow these
steps:

Procedure

1. Select the project to be renamed.
2. Right-click to display the menu, select Rename project.
3. A window is displayed waiting you to confirm the operation.
4. The project with the new name is displayed in the projects list.

Note: It is highly recommended to perform a build after you rename the IBM AD project. For more
information, see “Building Projects” on page 22.

Associating a z/OS Access Point to a Project

About this task

Note: For details on how to define a z/OS node, see “The zOS Tab” on page 74.

To associate a z/OS source to a project, follow these steps:

Procedure

1. Goto the IBM Application Discovery Build Configuration window.
2. 1. Select the project to which you want to associate a z/OS.
3. Right-click to display the menu and select Associate z/OS. The Associate z/OS instance-to-project

window is displayed.

A list of z/OS access points that are defined is presented and you can select the one(s) you want to
associate to your project. After you select at least one z/OS node from the list, click OK to return to the
initial Projects tab. The selected z/OS node is displayed under your project.

If you are working in multi-user mode and other users are logged in to the project, a warning message
informs the other users about the operation about to be run.

54 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

Recreate a Repository

About this task

To re-create a repository in case the current repository was deleted or got corrupted, follow these steps:

Note: Recreate Repository is not available for projects that are attached to an existing Db2 on z/OS
database when they are created.

Procedure

1. From IBM AD Build Configuration window, right-click the selected project and choose Recreate
Repository.

2. A warning message appears, waiting for you to confirm the recreation. After you confirm the
recreation, the repository is re-created, and a full build can be done by using an IBM Application
Discovery Build Client to allow analysis for the project.

3. If other users are logged in to the project, a warning message informs the other users about the
operation about to be run.

Upgrade a Repository

About this task

If other users are logged in to the project, a warning message informs the other users about the operation
about to be run.

Procedure

1. To upgrade the repository for a single project, follow these steps:
a) In the IBM Application Discovery Build Configuration window, right-click the selected project and

choose Upgrade repository if available.
b) A warning message appears, waiting for you to confirm the upgrade. After you confirm, the

repository is upgraded to the current version.
c) A warning message appears, waiting for you to confirm the upgrade. After you confirm, the

repository is upgraded to the current version.
2. To upgrade the repository for a list of projects, follow these steps:

a) First, create a text file by specifying the list of projects to be included in the repository upgrade
operation.

Important: Each project name must appear on a separate line in the text file.
b) Open the command prompt and enter the following command:

C:\Program Files\IBM Application Discovery Build Client\Bin\Release\IBMApplicationDiscoveryBuildClient.exe"/ ru <fully qualified LOG file name>
<fully qualified projects file name>

Where,

• <fully qualified LOG file name> is, the log file that is created detailing the results of the upgrade
operation.

• <fully qualified projects file name> contains the file name with the projects to be upgraded, one
per line.

If <fully qualified projects file name> is not present, all projects are upgraded.

Tip: This operation runs in the background.

Chapter 6. IBM AD Build Configuration 55

Stop the Mainframe Import
This function is used to cancel the library scanning, query environment and get files operations.

If other users are logged in to the project, a warning message informs the other users about the operation
about to be run.

Configuring the z/OS Connection

About this task

You can use this option to specify different settings for the z/OS Connection and the names of the
libraries that contain the resources you want to import in your project. You can enter all the data that you
consider relevant in a dedicated tab, for each type of resource.

Important: Authentication with proper credentials through Carma/Endevor is enforced before one can
read/obtain any source file, regardless of method used for obtaining these sources:

1. By downloading from mainframe (Endevor)
2. Otherwise provided. These sources can only be viewed if they are shared over the network. Read only

access is required.

Procedure

1. Goto IBM Application Discovery Build Configuration, Projects tab and select the project then the
corresponding z/OS node, then right-click to display the menu. Select Configure connection to
display the following window.

2. Complete the settings or the names of the libraries that contain the resources you want, according to
the type of resource you need to import.

56 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

3. To add a library, enter its name in the corresponding field, then click Add. The name of the new
library is displayed in the library list. Use the Update, Edit, and Remove to modify the list of libraries
or the name of an existing library.

4. Next, select the CICS information tab to enter the CICS information library details.

Existing CICS information libraries are listed in the central part of the tab.

• To add a CICS information library, enter the details in the corresponding fields then click Add. The
new library is displayed in the list in the central part of the screen.

• To edit the details of an existing library, select it from the list and click Edit. The corresponding
details are displayed. Make the changes then click Update.

• To remove a library from the list, select it then click Remove.
5. Next, select the ENDEVOR Info tab to display it as in the following image:

Chapter 6. IBM AD Build Configuration 57

Fill the available fields with the required data then click Add. The parameters file is added to the list
in the central part of the tab.

• To edit the details of an entry, select it and then click Edit. The corresponding details are displayed.
Make the changes then click Update.

• To remove a parameters file from the list, select it then click Remove.

Configurations for the ENDEVOR Info tab:

• Endevor Parameters

Each entry in the list has four parameters. These parameters represent a state for which IBM AD
collects sources. Whenever IBM AD looks up for a member on Endevor for an entry in the list, the
member is searched in the starting location according to these four parameters, and if not found, it
continues to move forward on the promotion route by looking for the member until no forward
movement can be done on the route. The four parameters are:

– Environment

Represents the functional area within an organization, for example: development, test, or
production. There can be as many environments as needed within Endevor.

– Stage

Represents the stage of the software lifecycle and it is always associated with an environment
that can have either 1 or 2 stages. Each stage has an ID that identifies whether it is the first or
the second stage in the environment. It means that the ID is either 1 or 2 and it is unique only
within the related environment.

– System

The user must define a system to each environment in which it is planned to be used. An
additional usage is to define more than one system name to a mainframe application. It means
that two systems can describe the same application in different environments and stages.

58 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

– Subsystem

This is a subcomponent of a system. A system must have a minimum of one subsystem. The
subsystem name for a mainframe application or component can be changed across
environments and stages.

• Promotion routes

The Promotion routes can be defined by using a configuration file. The Promotion routes file is
optional, and if omitted then IBM AD does not trace the members forward on the promotion routes.
A route represents a collection of maps, where a map is an indication of the current Environment +
Stage + System + Subsystem, and the next Environment + Stage + System + Subsystem.

The format of the configuration file is:

[<From Environment>,<From Stage>,<From System>,<From Subsystem>]:[<To Environment>,<To
Stage>,<To System>,<To Subsystem>]

Example of the configuration file:

[DEV1,UNIT,SYS1,SUBSYS1]:[DEV1,INT,SYS1,SUBSYS1]
[DEV1,INT,SYS1,SUBSYS1]:[QA,QA,SYS1,SUBSYS1]
[QA,QA,SYS1,SUBSYS1]:[QA,HOLD,SYS1,SUBSYS1]
[QA,HOLD,SYS1,SUBSYS1]:[PROD,PROD,SYS1,SUBSYS1]
[DEV2,UNIT,SYS1,SUBSYS1]:[DEV2,INT,SYS1,SUBSYS1]
[DEV2,INT,SYS1,SUBSYS1]:[QA,QA,SYS1,SUBSYS1]
[DEV3,UNIT,SYS1,SUBSYS1]:[DEV3,INT,SYS1,SUBSYS1]
[DEV3,INT,SYS1,SUBSYS1]:[QA,QA,SYS1,SUBSYS1]
[QFIX,TSTFIX,SYS1,SUBSYS1]:[QFIX,PREPROD,SYS1,SUBSYS1]
[QFIX,PREPROD,SYS1,SUBSYS1]:[PROD,PROD,SYS1,SUBSYS1]

From the Promotion routes field, click Browse and select the <PromotionRoutes> configuration
file that contains the promotion routes. Make sure that you have access to the location where the
<PromotionRoutes> configuration file is stored.

• Types list

The Types list points to the file from which IBM AD reads all required types for the project. These
types are categories of source code (COBOL, COPYBOOK, JCL, and so on). Types are defined to
each system/stage in which the user plans to use them.

The format of the types list file is:

Type1,Type2,Type3, and so on

Examples of the types list file:

COBOL,JCL,COPYBOOK

MACRO,JCL,ASSEM,PL1

From the Types list field, click Browse and select the <TypesList> file that contains all Endevor
supported file types that can be imported into the project. Make sure that you have access to the
location where the <TypesList> file is stored.

A sample file is available at the following location: <IBM AD Build Client installation
folder>\Bin\Release\Samples\EndevorTypesList.txt.

6. Next, select the DB2 and MQ tab to display it as in the following image:

Chapter 6. IBM AD Build Configuration 59

Enter the corresponding DB2 and MQ subsystem names in the associated fields and the
corresponding DB2 version.

When configuring DB2 on IBM AD Build Client, there are associated configurations that must be
performed on the mainframe. Fore more information, see Db2 Checklist in Appendix 5.

7. Next, select the Natural and Adabas tab to display it as in the following image.

60 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

Complete the required settings information for the Natural and Adabas libraries. Use the prior
procedure to add, edit, update, and remove libraries.

8. Next, select the IMS Information tab to display it as in the following image:

Chapter 6. IBM AD Build Configuration 61

Complete the required settings for the IMS libraries.
9. Select the Librarian tab to display it as in the following image:

Add the names of the required libraries and use Add, Edit, Update, and Remove to manage these
libraries.

10. Select the ChangeMan ZMF tab to display it as in the following image:

62 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

Complete the name of the IBM ParmLib library and then enter the number of the ChangeMan ZMF
Subsystem.

In the ChangeMan ZMF Applications field, click to add an application name to the list. Click

 to remove the selected application from the list. Use and to change the position of
the selected application in the applications list.

Note: If no ChangeMan ZMF Applications are mentioned, the members are scanned/retrieved only
from packages.

When configuring ChangeMan ZMF on IBM AD Build Client, there are associated configurations that
must be performed on the mainframe. Fore more information, see ChangeMan® ZMF Checklist in
Appendix 5.

11. Select the Tivoli Workload Scheduler tab to display it as in the following image:

Chapter 6. IBM AD Build Configuration 63

Complete the Subsystem name of the TWS controller. After you finish, click Save.
12. Select the CA-7 Workload Automation tab to display it as in the following image. Select a retrieval

mode, and specify values in the fields.
If the settings in the CA-7 Workload Automation pane are changed, run a full import, instead of an
update, to assure the consistency of the information in the repository with the one from the
mainframe.

64 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

Library name
The name of the library where the INIT deck is located.

Member name
The name of the INIT deck member that lists all the libraries, in which CA-7 must look for to find
and submit jobs.

In the CA-7 documentation, the INIT deck is sometimes referred to as the CA-7 Initialization file.
To find this library (PDS) and member combination for your system, refer to the JCL for the
CA7ONL procedure at your site. It is referenced in this JCL by DD name UCC7IN.

Note: If you do not have access to this JCL, ask your CA-7 administrator for the information.

In memory
The default retrieval mode. It uses CA Common Communications Interface (CAICCI) to get job
information. The results are retrieved directly from CA-7 into the memory address space of the
agents and transferred back to IBM AD Build.

Via dataset
The alternative retrieval mode. It uses Batch Terminal Interface (BTI) to get job information. The
results are delivered by CA-7 into a data set. Then the agents read the data and transfer it back to
IBM AD Build.

Instance name
The CA-7 instance name.

User name
The name of the user under which the agents are running.

Library name
The name of the library that contains the AD skeleton. This library is a member that is delivered
as part of the installation if the CA-7 access through BTI is required.

Chapter 6. IBM AD Build Configuration 65

Skeleton name
The name of the AD skeleton that is used for accessing CA-7 through BTI. This skeleton is
submitted by the agents. The job uses the BTI interface to get the information back to the data
set.

Note:

• This field is available only if the Via dataset retrieve mode is selected.
• The value in this field is used when Full CA-7 import is selected when you retrieve operational

information.

Job name prefixes
The name prefixes of the jobs to be retrieved. Separate multiple job name prefixes by commas. If
this value is not specified, all the jobs with a name that starts with any of the following characters
are to be retrieved:

A-Z # @ £

Note: This field is available only if the In memory retrieve mode is selected.

Skeleton name for update
The name of the AD skeleton that is used for accessing CA-7 through BTI. This skeleton is
submitted by the agents. The job uses the BTI interface to get the information back to the data
set.

Note: The value in this field is used when Update CA-7 information with the differences since
the last import is selected when you retrieve operational information.

Bringing Operational Information

About this task

To retrieve operational information, follow these steps:

Procedure

1. Configure the z/OS connection (for details see “Configuring the z/OS Connection” on page 56)
2. Retrieve operational information.

Retrieve Operational Information
Note: Before you retrieve operational information, you must configure the z/OS connection. If you
associate the z/OS connection to a project only but you do not configure it, you cannot retrieve the data.
For more information, see topic “Configuring the z/OS Connection” on page 56.

Go to IBM Application Discovery Build Configuration, select the Projects tab, select the project, select
the z/OS node, right-click to display the menu, and select the Retrieve Operational Information option to
display the following window.

66 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

Note: If you do not configure the z/OS connection for the selected task, a warning message is presented,
indicating the entries for which the configuration is missing.

A list of available tasks is presented grouped by categories: You can choose to Retrieve schedulers
information, Retrieve TP monitor information, Retrieve Database information, or Retrieve other
information. Make the selections then click OK to run Query Operational Information.

Note: The available options depend on the type of project you create.

Following is a list of entities/objects for which Connect for mainframe brings information:

• Adabas

The Connect for mainframe gives information about a total of three entities:

1. Adabas Database.
2. Adabas File.
3. Adabas Field.

The information refers to physical allocations, defined files that include file fields.
• CA Workload Automation CA 7 Edition

The Connect for mainframe gives information about a total of two entities:

1. CA 7 Jobs.
2. Datasets.

The information refers to triggering and dependencies.

The following two options are provided for CA-7 Workload Automation:
Full CA-7 import

Removes the existing information that is stored in the repository, and then imports the information
from the mainframe into the repository as configured.

Update CA-7 information with the differences since the last import
Import only the changes from the mainframe into the repository as configured.

Note: A full import must be run before an update. Otherwise, the update will not have the correct
results.

Chapter 6. IBM AD Build Configuration 67

For more information about the CA-7 configuration in AD Connect for Mainframe, see IBM AD Connect
for Mainframe Configuration Guide.

• CSD (CICS)

The Connect for mainframe gives information about a total of seven entities:

1. CICS Region
2. CICS Group
3. CICS List
4. CICS File
5. CICS Map
6. CICS Program
7. CICS Transaction

The information refers to all CICS regions, including defined programs\transactions\maps\files,
hierarchy of groups and lists, and performance information for transactions such as Elapsed time, IO
count, and DB2 count.

• DB/2

Connect for mainframe brings information about a total of 14 entities:

1. Db2 Database.
2. Db2 Table.
3. Db2 Column.
4. Db2 Index.
5. Db2 Key.
6. Db2 Package.
7. Db2 Package List.
8. Db2 Plan.
9. Db2 Storage Group.

10. Db2 Stored Procedure.
11. Db2 Table Space.
12. Db2 Trigger.
13. Db2 View.
14. Db2 Volume.

The information refers to all databases, tables, columns, table spaces, triggers, views, plans storage
groups.

• Devices and Physical files

The Connect for mainframe gives information about the following entities:

1. Physical files
2. Devices

The information refers to all devices connected to the LPAR, and all physical data sets on disk devices.
• Hardware

The Connect for mainframe gives information about a one entity:

1. CPU
• IMS

The Connect for mainframe gives information about a total of three entities:

1. IMS Database.

68 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

https://www.ibm.com/support/knowledgecenter/SSRR9Q_5.1.0/IBM_AD_Connect_for_Mainframe_Configuration_Guide_OUT_KC/AD_Connect_For_Mainframe_landing_page.html
https://www.ibm.com/support/knowledgecenter/SSRR9Q_5.1.0/IBM_AD_Connect_for_Mainframe_Configuration_Guide_OUT_KC/AD_Connect_For_Mainframe_landing_page.html

2. IMS Transaction.
3. IMS Program.

The information refers to databases, programs, and transactions of IMS.
• LPAR and SYSPLEX

The Connect for mainframe gives information about a total of two entities:

1. LPAR Information.
2. Sysplex Information.

The information refers to LPARS, SYSPLEXS, the relationships, and links to other entities (CPU, installed
software)

• MQ Series

The Connect for mainframe gives information about a total of three entities:

1. Queue Manager
2. Queue
3. Channel

The information refers to Queue Managers, Queues, and Channels.
• Predict

The Connect for mainframe gives information about a total of two entities:

1. Predict file.
2. Predict field.

The information refers to predict files and fields.
• SMF

The Connect for Mainframe gives information about a total of three entities:

1. SMF JCL information.
2. SMF JCL Step information.
3. SMF JCL Step IO.

The information refers to scheduled jobs, including total CPU consumption, IO count, and CPU count
per steps, and used physical files.

• Tivoli® Workload Scheduler

The Connect for mainframe gives information about a total of two entities:

1. TWS Applications.
2. TWS Jobs.

The information refers to TWS defined applications, jobs, and their dependencies.

Before you retrieve the information, a confirmation window is displayed. Click Yes to start the selected
query operation.

After the operation is finished, 2 log files are generated: One containing the errors (if applicable), the
other detailing the operations undertaken. These log files are stored in the following location: project
name/zOS/logs/zOS name.

Retrieve operational information in the background

IBM AD Build Client provides an option to retrieve operational information in the background. To force the
retrieve operation information to run in the background, follow the steps:

1. Click Start, select Run then type cmd followed by ENTER to open the command window.

Chapter 6. IBM AD Build Configuration 69

2. Go to the folder where your IBM AD Build Client is installed and locate
IBMApplicationDiscoveryBuildConfiguration.exe.

3. Drag IBMApplicationDiscoveryBuildConfiguration.exe file into the command window then
type /? and press ENTER. A window is displayed containing detailed instructions about how to retrieve
operational information in the background. In the command prompt enter the following command:

C:\Program Files\IBM Application Discovery Build Client\Bin\Release
\IBMApplicationDiscoveryBuildConfiguration.exe /ba <fully qualified file name>

The <fully qualified file name> points to an INI file that contains information about actions that are
executed in headless mode.

A sample for the configuration INI file is found in C:\Program Files\IBM Application
Discovery Build Client\Bin\Release\Samples\BuildConfigurationBASample.ini.
You can use the sample INI file or create a new configuration file.

The format of <fully qualified file name> is as follows:

[OperationalInformation]
;CA7IMPORT=[<ProjectName1>, <zOSConnectionName1>],[<ProjectName2>, <zOSConnectionName2>]...
;CA7UPDATE=[<ProjectName1>, <zOSConnectionName1>],[<ProjectName2>, <zOSConnectionName2>]...
;TWS=[<ProjectName1>, <zOSConnectionName1>],[<ProjectName2>, <zOSConnectionName2>]...
;CSD=[<ProjectName1>, <zOSConnectionName1>],[<ProjectName2>, <zOSConnectionName2>]...
;IMS=[<ProjectName1>, <zOSConnectionName1>],[<ProjectName2>, <zOSConnectionName2>]...
;Adabas=[<ProjectName1>, <zOSConnectionName1>],[<ProjectName2>, <zOSConnectionName2>]...
;DB2=[<ProjectName1>, <zOSConnectionName1>],[<ProjectName2>, <zOSConnectionName2>]...
;Predict=[<ProjectName1>, <zOSConnectionName1>],[<ProjectName2>, <zOSConnectionName2>]...
;SMF=[<ProjectName1>, <zOSConnectionName1>],[<ProjectName2>, <zOSConnectionName2>]...
;MQ=[<ProjectName1>, <zOSConnectionName1>],[<ProjectName2>, <zOSConnectionName2>]...

Attention: In order for the operational information to be taken into account, the comment tag ;
must be removed.

Predefined values for <Operational task>:

• Schedulers information: CA7IMPORT, CA7UPDATE, TWS
• TP monitor information: CSD, IMS
• Databases information: ADABAS, DB2, Predict
• Other information: MQ, SMF

4. A log file is generated in C:\Program Files\IBM Application Discovery Build Client
\Bin\Release\Log folder. The name of the log file is ADBuildConfiguration_datetime.log.

Bringing data from mainframe libraries (PDS Libraries, Endevor, Librarian,
Natural)

1. Associate a z/OS connection to project (for details see “Associating a z/OS Access Point to a Project”
on page 54).

2. Configure the z/OS connection (for details see “Configuring the z/OS Connection” on page 56).
3. Query the environment.
4. Scan files.
5. Scan libraries.

Following is the detailed description of the steps 3-5.

Note: IBM AD Connect for Mainframe uses z/OS Unicode services to convert character data from one
code page to another. There are two settings that tell IBM AD Connect for Mainframe which code page to
use for the host and the client:

1. HOST CODE PAGE
2. CLIENT CODE PAGE

70 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

Each variable is a five digit number, denoted by a Coded Character Set Identifier (CCSID) and established
by the Character Data Representation Architecture (CDRA). Usually the CCSID is the same as the code
page number used in the informal use. In case there is a doubt in using the correct CCSID, see z/OS
Unicode Services User’s Guide and Reference, Appendix A. Description of CCSIDs.

Retrieving Source Code Information

About this task

Warning: Before you retrieve the source code information, you must configure the z/OS
connection. If you associate the z/OS connection to a project only but you do not configure it, then
you cannot retrieve the data.

This step reads the contents of the sources (either auto-discovered or manually added) configured as
presented in “Configuring the z/OS Connection” on page 56.

Goto IBM Application Discovery Build Configuration, select Projects tab, then select the project, then
select the z/OS node, and then right-click to display the menu.

Note: You can run this operation on several projects simultaneously through several z/OS connections.
Select all the z/OS connections that you want to use (several connections that are defined for the same
project or for different projects) then right-click to display the menu and select the scanning operation
that you want to apply. If the scan operation cannot be completed on one or more of the selected z/OS
connections, a warning message is displayed but the scanning operation continues for the rest of the
selected connections. Also, for each z/OS connection a dialog box offers the possibility of individually
selecting the libraries to be scanned.

Procedure

1. Select the Retrieve Source Code Information option to display the following window:

If libraries are found on the remote computer, a list of libraries that are automatically discovered are
presented.

To scan the libraries added manually, select the Manual Selection option. The list is updated to
present only those libraries. Select the libraries that you want to include in the scanning process, then
press Scan. Alternatively, you can manually add a library to the list.

Chapter 6. IBM AD Build Configuration 71

https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R3sa380680
https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R3sa380680

Note: The Delete option becomes available if you select a manually added library.
2. If the PDS Library option is selected,

Connect for mainframe brings information about a total of three entities:

a. Source Library
b. Source Member
c. User

The information refers to libraries and members within the libraries, including member creation date,
modification date, and users who modified members.

3. If the Endevor option is selected, the scanning window displays a list of libraries that are selected for
the scanning operation.
Connect for mainframe brings information about the following CA Endevor entities:

a. Endevor members.
b. Endevor Systems.
c. Endevor Subsystems.
d. Endevor Environments.
e. Endevor Stages.
f. Endevor Types.

The information refers to System, Subsystem, Environment, Stage, and type.
4. If the Scan Librarian Libraries option is selected, the scanning window is displayed.

5. If the Scan Natural Libraries option is selected, the scanning window is displayed.

From the list, select the Natural libraries that you want to scan, then click Proceed. Alternatively, you
can use the Add new libraries field to add new libraries to the list of existing ones.

Connect for mainframe brings information about the following Natural entities:

a. Natural Library

72 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

b. Natural Member

The information refers to last update date, version, and user name.
6. Before scanning, a confirmation window is displayed: Click Yes to start scanning the selected libraries.

Note: After the operation is finished, 2 log files are generated: One containing the errors (if applicable)
the other detailing the operations that are undertaken. These log files are stored in project
name/zOS/logs/zOS name.

7. Repeat the procedure to scan all the libraries.

Bringing Data From Mainframe Using ChangeMan® ZMF
1. Associate a z/OS connection to project (for details see “Associating a z/OS Access Point to a Project”

on page 54)
2. Configure the z/OS connection (for details see “Configuring the z/OS Connection” on page 56)
3. Retrieve ChangeMan information.

Following is the description of the step 3.

Retrieving ChangeMan® Information

Procedure

1. In the IBM Application Discovery Build Configuration, select the project and then right-click to
display the corresponding menu. Click Retrieve source code information.

2. If applications are configured in the z/OS Configuration > ChangeMan ZMF, then the next screen is
displayed after you click OK.

Chapter 6. IBM AD Build Configuration 73

Select Retrieve from Packages or Retrieve from Baseline or both.

ChangeMan ZMF

The Connect for Mainframe brings information about a total of four entities:

a. ZMF Applications.
b. ZMF Components.
c. ZMF Libraries.
d. ZMF Packages.

The information refers to Applications, Components, Libraries and Packages, including relationships
such as Library to Component, Package to Component, Packages to Application.

If applications are not configured in the z/OS Configuration > ChangeMan ZMF (ChangeMan ZMF
tab), a warning message is displayed after you click OK.

The zOS Tab
When you work on a project, you might want to use resources that are on a mainframe machine. You can
set up your remote connections and associate them to your project, by using the zOS option.

The zOS tab presents a list of all the zOS connections that are defined and you can modify the existing
ones or create new connections.

74 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

Create a new zOS Connection

To create a new zOS Connection, follow the steps:

1. Go to zOS tab in IBM AD Build Configuration, right-click on the zOS Connection root and select
Create zOS Connection. The Mainframe Access Point Connection window is displayed.

2. Enter the name for the new zOS Connection, then click OK.
3. The z/OS Connection Setup window is displayed.

Enter the host IP or host name, the port number, and the maximal number of concurrent threads in the
corresponding fields, then click Test Connection to check the connection to the new Mainframe
access point. If the parameters you entered are correct, a confirmation window is displayed.

Chapter 6. IBM AD Build Configuration 75

Note: An existing zOS Connection can be edited or deleted.

Automatic Messaging
When multiple users are connected to the same project and one user changes the folder structure of the
project or attempts one of the following operations: Delete project, Associate z/OS, Recreate
repository, Upgrade repository, Restart Application Server, all the other users receive an automatic
notification.

76 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

Chapter 7. IBM AD Build Client and IBM AD Build
Configuration CLI Commands

I. Overview
In the following sections, a list of IBM AD Build Client and IBM AD Build Configuration batch commands
is presented. These commands are used to cover a set of actions such as Create Projects, Upgrade
Repositories Structures, Build Projects, Synchronize Projects, using CLI commands.

The list of actions that can be performed in the background, use cases and best practices are also
available in HTML format.

1. Click Start, select Run then type cmd to open the command window.
2. Go to the folder where your IBM AD Build Client is installed and locate
IBMApplicationDiscoveryBuildClient.exe.

3. Drag IBMApplicationDiscoveryBuildClient.exe into the command window then type /? and
press ENTER.

As a result, a web page is displayed containing detailed information.

II. Description of the IBM AD Build Client Batch Commands

1. Creating a new project in background

IBM AD Build Client can be invoked by using two parameters as follows:

IBMApplicationDiscoveryBuildClient.exe /np Full path to the .ini configuration file

Where:

• /np is the parameter responsible for creating a new project.
• The .ini configuration file is the file in which the details for creating a new project are defined. The full

path to the .ini file must be used as a parameter.

The content of the .ini file is defined as follows:

[ADNewProj]
ProjectName = "name of the project"
Path = "full path of the project including the project's name"
Environment = "zOS"
ProjectLanguages = "DT Cobol,Assembler,Cobol,Natural,PL1,Ads"
DBTypes = "Datacom,IDMS,Adabas,Relational,IMS/DB"
MapTypes = "Natural (LNM),CICS (BMS), IMS/DC (MFS),ADS Map"
ProjectDBType = "SQL/DB2"
CCSEnvironment = "Environment name"
DBServerName = "DB Server Name "blank space" [ip/name:port]"
AttachToDB = "Y/N"
DBName = "dbName"
SchemaName = "schemaName"

Notes®:

1. [ADNewProj] is the section name and under any circumstances it must not be modified.
2. The Lines from the .ini file can be commented by adding ";" (semicolon) at the beginning of each

line.
3. The names of the following parameters must not be modified:

© Copyright IBM Corp. 2010, 2019 77

• ProjectName
• Path
• Environment
• ProjectLanguages
• DBTypes
• MapTypes
• ProjectDBType
• CCSEnvironment
• DBServerName
• AttachToDB
• DBName
• SchemaName

4. The values for all the parameters must be added between double quotation marks.
5. The Path parameter must contain as value the full path of the project (the project name included in

the path).
6. The CCSEnvironment parameter takes as value the Environment name as defined in IBM AD

Configuration Server at the following location: Home Page > Configuration server name >
Environments > "MyEnvironmentName".

7. The DBServerName parameter takes as value the Relational database server name and the host
name or the IP of the computer, including the port as defined in IBM AD Configuration Server. The
DBServerName parameter has the following format:

"Relational Database Server Name "a mandatory blank space" [ip/
hostname:port]"

Where:

• Relational Database Server Name is defined in IBM AD Configuration Server at the following
location: Home Page > Configuration server name > Environments > "MyEnvironment" >
Relational Database Servers.

• [ip/hostname:port] is defined in IBM AD Configuration Server at the following location: Home
Page > Configuration server name > Environments > "MyEnvironment" > Relational Database
Servers > "MyRelationalDBServer". The information is present under the Host and Port entries.

Example:

DBServerName = "SQLPROD [SQL.PROD.HOST:1433]"

8. The AttachToDB parameter can be set to Y or N as follows:

• Must be set to N when you create a project on:

– SQL Server.
– Db2 on Z, where the project's database doesn't exist and needs to be created.

• Must be set to Y when you use Db2 on z/OS as a relational database server and the project you
are about to create has a Database and a Schema already created. In this case, you must enter the
corresponding values for the DBName and SchemaName parameters.

For a better understanding and examples, see the Use Cases and Best Practices section.

A sample for the New Project .ini file is available at the following location: <IBM AD Build Client
installation folder>\Bin\Release\Samples\newProjectBASample.ini.

The logs for New project in background are available at the following location: <IBM AD Build
Client installation folder>\Bin\Release\NewProjInBackLog_timestamp.log.

78 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

2. Repository upgrade

IBM AD Build Client can be invoked in batch mode to upgrade the project's repository (the database's
structure) using the following command:

IBMApplicationDiscoveryBuildClient.exe /ru LOG file name optional parameter: full path to a
file that contains the list of the projects

Where:

• /ru is the parameter responsible for upgrading the project's repositories (Upgrade Repository).
• LOG File Name is the full path of the log file responsible to show the status and progress for the

Repository Upgrade process. This log file can have any name and may be in any given path (as long as
you have read/write access to that path).

• Optional Parameter: Full path to a file that contains the list of the projects to be upgraded is the
parameter that must be used only when a given number of projects must be upgraded (not all projects
are upgraded). This file must contain the name of the projects (as defined in IBM AD Build Client) that
get their repositories upgraded (one project per line).

Example for how the optional parameter file looks like:

Project1
Project2
Project3

Note: If the optional parameter is not set, then all of the existing projects will have their repositories
upgraded.

For a better understanding and examples, see the Use Cases and Best Practices section.

A sample for the Repository Upgrade optional parameter file (list of projects) is available at the following
location: <IBM AD Build Client installation folder>\Bin\Release\Samples
\repositoryUpgradeBASample.txt.

The logs for Repository Upgrade are available in the location that is mentioned in the description of LOG
File Name.

3. Build project in background

IBM AD Build Client can be invoked in batch mode to run a build (full build) by using the following
command:

IBMApplicationDiscoveryBuildClient.exe /fb ProjectName

Where:

• /fb is the parameter that is used to invoke the build action.
• ProjectName is the name of the project where full build is triggered.

For a better understanding and examples, see the Use Cases and Best Practices section.

The log for Build in background is similar to Build in GUI mode. The log can be found under the project's
folder as project's name and timestamp. Example: MyProject1_timestamp.txt.

4. Periodic Updates for IBM AD Build Projects

IBM Application Discovery projects must be kept up-to-date in terms of the source code and the
information that is stored in the repository. For such a use case, IBM AD Build Client can be invoked in
batch mode by using two different commands as follows:

4.1 To keep the source code up-to-date in the projects by using the Synchronization process.

IBMApplicationDiscoveryBuildClient /umm1 ProjectName

Chapter 7. IBM AD Build Client and IBM AD Build Configuration CLI Commands 79

Where:

• /umm1 is the parameter that is used to invoke the Synchronization process.
• ProjectName is the name of the project where the Synchronization process is triggered.

Note: It is mandatory to have the Synchronize feature enabled in IBM AD Configuration Server and the
synchronization file configured. To enable the Synchronize feature, go to Home Page > Install
Configurations > IBM Application Discovery Build Client > Enable Members Synchronization.

For a better understanding and examples, see the Use Cases and Best Practices section.

A sample for the Synchronization file is available at the following location: <IBM AD Build Client
installation folder>\Bin\Release\Samples\synchronizeBASample.txt.

The logs for Synchronize are available under: Project's Folder > Synchronize.

4.2 To keep the information stored in repository up-to-date by using the Make process.

IBMApplicationDiscoveryBuildClient /m1 ProjectName /m2 y /m3 y

Where:

• /m1 is the parameter that is used to invoke the Make process.
• ProjectName is the name of the project where the Make process is triggered.
• /m2 (y/n) refers to whether the make process is forced or not as follows:

– /m2 y means that if another AD Component is using the project in read mode, the process starts.
– /m2 n means that if another AD Component is using the project in read mode, the process does not

start until the project is released.
• /m3 (y/n) refers to whether the status of the Make process is logged or not as follows:

– /m2 y means that the status log file BatchMakeStatusFile_timestamp.txt is generated under
the project's folder.

– /m2 n means that the status log file is not generated.

For a better understanding and examples, see the Use Cases and Best Practices section.

The logs for the Make process in background can be found under the project's folder as
BatchMakeStatusFile_timestamp.txt and Project'sName_timestamp.text.

5. Automatically map/add sources from a PC local folder to a virtual folder in IBM AD Build Client

IBM AD Build Client can automatically add all files from a given physical folder to a virtual one (similar to
Add all files from folder option that can be found in GUI Mode) by using the following command:

IBMApplicationDiscoveryBuildClient.exe /u1 ProjectName /u2 Full path to the .ini file (where
there's the mapping between Virtual and Physical folders

Where:

• /u1 is the parameter that is used to invoke this process.
• ProjectName is the project where this process is triggered.
• /u2 is the full path to the .ini file where there's the mapping between virtual and physical folders.

The content of the .ini file is defined as follows:

Virtual Folder Name as displayed in IBM AD Build Client = Full Path to the physical folder

A sample file is available for this process at the following location: <IBM AD Build Client
installation folder>\Bin\Release\Samples\addFilesFromLocalFolderBASample.txt.

The logs for this process are available under: Project's Folder >
UpdateInBackgroundLog_timestamp.txt.

80 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

6. Update API Resolutions usage

IBM AD Build Client can be invoked in batch mode to update API Resolutions by using the following
command:

IBMApplicationDiscoveryBuildClient /uar1 ProjectName

Where:

• /uar1 is the parameter that is used to invoke the update of API Resolutions.
• ProjectName is the name of the project where the API Resolutions process is triggered.

Note:

• It is mandatory to have the API Extensibility feature enabled in IBM AD Build Client . To enable the
API Extensibility feature, go to IBM AD Build Client > Project > Settings > Extensibility > Enable
API/Macro handling by using a configuration file.

• The Update API Resolutions must be used for the situation when the API Resolution File is modified,
so the resolutions must be updated in the repository but without running a full build on the project
(which might be time consuming).

The logs for the Update API Resolutions usage are available under: Project's Folder >
UpdateApiResolutions_timestamp.txt.

III. Description of the IBM AD Build Configuration Batch Commands
IBM AD Build Configuration can be invoked in batch mode by using the following command:

IBMApplicationDiscoveryBuildClient.exe /ba Full path to the corresponding .ini configuration
file

Where:

• /ba is the parameter that is used to invoke it in batch mode.
• The .ini configuration file is the file in which the actions that are executed in batch mode are defined.

The full path to the .ini file must be used as a parameter.

The content of the .ini file is defined as follows:

[ProjectsActions]
DeleteProject=PjName1,PjName2
AssociatezOS=[PjName1, zOSConnName1],[PjName2, zOSConnName2]
[OperationalInformation]
CA7IMPORT=[PjName1, zOSConnName1],[PjName2, zOSConnName2]...
CA7UPDATE=[PjName1, zOSConnName1],[PjName2, zOSConnName2]...
TWS=[PjName1, zOSConnName1],[PjName2, zOSConnName2]...
CSD=[PjName1, zOSConnName1],[PjName2, zOSConnName2]...
IMS=[PjName1, zOSConnName1],[PjName2, zOSConnName2]...
Adabas=[PjName1, zOSConnName1],[PjName2, zOSConnName2]...
DB2=[PjName1, zOSConnName1],[PjName2, zOSConnName2]...
Predict=[PjName1, zOSConnName1],[PjName2, zOSConnName2]...
SMF=[PjName1, zOSConnName1],[PjName2, zOSConnName2]...
MQ=[PjName1, zOSConnName1],[PjName2, zOSConnName2]...

Notes:

1. [ProjectsActions] and [OperationalInformation] are the section names and under any circumstances
they must not be modified.

2. The Lines from the .ini file can be commented by adding ";" (semicolon) at the beginning of each
line.

3. The names of the following parameters must not be modified:

• DeleteProject
• AssociatezOS

Chapter 7. IBM AD Build Client and IBM AD Build Configuration CLI Commands 81

• CA7IMPORT
• CA7UPDATE
• TWS
• CSD
• IMS
• Adabas
• DB2
• Predict
• SMF
• MQ

4. All the parameters that are mentioned in step 3 accept the following values:

• PJName() is the name of the project.
• zOSConnName() is the z/OS Connection's name that is associated to the project in IBM AD Build
Configuration.

5. For the parameters that accept two values, such as Associate z/OS and all Operational Information, it
is mandatory to keep "[]" (square brackets) as described in the above template.

For a better understanding and examples, see the Use Cases and Best Practices section.

A sample for the .ini file is available at the following location: <IBM AD Build Client
installation folder>\Bin\Release\Samples\BuildConfigurationBASample.ini.

The logs for IBM AD Build Configuration batch commands are available at the following location: <IBM
AD Build Client installation folder>\Bin\Release\Log
\ADBuildConfiguration_timestamp.log.

IV. Use Cases and Best Practices
Make sure that IBM Application Discovery is installed, configured, and up and running before you get
into these use cases.

All the configurations (files) that are considered as prerequisites to run the batch commands are put in
place and below you can find some best practices and samples that can be applied in any environment.

Details on how and when to use these batch commands are provided and you can use any scripting
method to invoke and execute, entirely based on your needs.

Note: It is important to follow the same order as shown below when you invoke the IBM Application
Discovery batch commands.

1. Scheduling periodic updates for IBM AD Build Client projects

Create a batch file that triggers the following actions:

• Synchronize (update, add, delete) the existing members in projects MyProject1, MyProject2 , and
MyProject3 so that they are up-to-date.

• Run the Make process so that only the modified members (changed, added) are build and the
information is refreshed in the repository.

The content of the .bat file:

IBMApplicationDiscoveryBuildClient.exe /umm1 MyProject1
IBMApplicationDiscoveryBuildClient.exe /umm1 MyProject2
IBMApplicationDiscoveryBuildClient.exe /umm1 MyProject3
IBMApplicationDiscoveryBuildClient.exe /m1 MyProject1 /m2 y /m3 y
IBMApplicationDiscoveryBuildClient.exe /m1 MyProject2 /m2 y /m3 y
IBMApplicationDiscoveryBuildClient.exe /m1 MyProject3 /m2 y /m3 y

82 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

Note:

• The .bat file can be scheduled by using, for example, Windows Scheduler, so that it can be triggered
on a daily, weekly, or monthly basis (depending on how often the source is changed and needs to be
updated). For more information, see “V. Setting up Automatic Updates with Windows Scheduler” on
page 84.

• The Synchronize and Make processes, depending on the number of changes that are processed, they
may be time consuming, therefore, based on your environment, set the scheduler to run when the users
are not using the projects for analysis.

2. Automatically upgrade projects repositories and run a build as soon as a new version of IBM AD
Build Client is installed

Create a batch file that triggers the following actions:

• Upgrade the repository for projects MyProject1, MyProject2, and MyProject3 (found in the
RepListofProjects.txt configuration file).

• Execute a build (full build) on the mentioned projects.

The content of the .bat file:

IBMApplicationDiscoveryBuildClient.exe /ru "\\AppServer\IBMAD\Conf\Logs\RepUpgrade.log" "\
\AppServer\IBMAD\Conf\RepListofProjects.txt"
IBMApplicationDiscoveryBuildClient.exe /fb MyProject1
IBMApplicationDiscoveryBuildClient.exe /fb MyProject2
IBMApplicationDiscoveryBuildClient.exe /fb MyProject3

3. End to end flow in IBM AD Build: Create new projects, associate an existing z/OS Connection to
projects, get the source code based on the host in PDS libraries and Endevor SCM (by using the
Synchronize feature), build projects

Create a batch file that triggers the following actions:

• Create three new projects: MyProject4, MyProject5, and MyProject6 (as configured in
MyProject4.ini, MyProject5.ini and MyProject6.ini).

• Associate the existing z/OS Connection: Lpar1 to the newly created projects (as defined in
zOSConf.ini).

• Get the source code from the host for the mentioned projects by using the Synchronization feature
(as configured in SyncProjectConf.txt).

• Run a build (full build) on the mentioned projects.

The content of the .bat file:

IBMApplicationDiscoveryBuildClient.exe /np "\\AppServer\IBMAD\Conf\MyProject4.ini"
IBMApplicationDiscoveryBuildClient.exe /np "\\AppServer\IBMAD\Conf\MyProject5.ini"
IBMApplicationDiscoveryBuildClient.exe /np "\\AppServer\IBMAD\Conf\MyProject6.ini"
IBMApplicationDiscoveryBuildConfiguration.exe /ba "\\AppServer\IBMAD\Conf\zOSConf.ini"
IBMApplicationDiscoveryBuildClient.exe /umm1 MyProject4
IBMApplicationDiscoveryBuildClient.exe /umm1 MyProject5
IBMApplicationDiscoveryBuildClient.exe /umm1 MyProject6
IBMApplicationDiscoveryBuildClient.exe /fb MyProject4
IBMApplicationDiscoveryBuildClient.exe /fb MyProject5
IBMApplicationDiscoveryBuildClient.exe /fb MyProject6

4. Delete one or a set of projects in batch mode

Run as standalone or create a batch file that deletes projects MyProject4 and MyProject6 (as configured
in DeletePj.ini).

IBMApplicationDiscoveryBuildConfiguration.exe /ba "\\AppServer\IBMAD\Conf\DeletePj.ini"

Chapter 7. IBM AD Build Client and IBM AD Build Configuration CLI Commands 83

V. Setting up Automatic Updates with Windows Scheduler

About this task

The Windows Scheduler can be used to run automatic, periodic updates to make sure that the resources
you are working on are always up-to-date.

Procedure

1. To set up the automatic updates in Windows Scheduler, select Start > Control Panel >
Administrative Tools > Task Scheduler. If you’re prompted for an administrator password or
confirmation type the password or provide the confirmation.

2. Select the Action menu then click the Create Basic Task. Type a name for the task and an optional
description then click Next.

3. Do one of the following actions.

• To select a schedule based on the calendar, click Daily, Weekly, Monthly, or One time, click Next;
specify the schedule that you want to use, and then click Next.

• To select a schedule based on common recurring events, click When the computer starts or When
I log on, and then click Next.

• To select a schedule based on specific events, click When a specific event is logged, then click
Next. Specify the event log and other information by using the menu lists, and then click Next.

4. To schedule a program to start automatically, click Start a program, and then click Next.
5. Click Browse to find the program you want to start, and then click Next. Click Finish.

Note: The *.bat file present in the “IV. Use Cases and Best Practices” on page 82 section can be
used in the scheduler.

84 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

Appendix 1 - API Extensibility Tutorial

This tutorial shows you how the analysis of an API call is supported by the extensibility feature with
sample files. You can also learn how to enable API call analysis for your own projects.

API Extensibility Sample Files

To help you get started with the API extensibility feature, the following sample files are provided in the AD
installation package:
COBOL program files

The sample COBOL programs that contain API calls. You can find the program files in the Cobol
folder.
SQLCALL1.cbl

The main COBOL program. The SQLCALL1 program calls the SQLGET program to perform calls
based on program IDs 1, 2, 3, and 4.

SQLGET.cbl
The API program that performs a call to retrieve the program name of a specific program
according to the program ID. The information that the SQLGET program needs to determine the
called program is stored in a database table.

Java™ utility files
The sample Java utilities that are used to resolve the API call in sample programs SQLCALL1 and
SQLGET. You can find the utility files in the \Java User Exit\src\com\ibm\ez\resolver
\utility folder.
ResolveCallUtility.java

The Java utility that is used as a user exit to resolve the API call. This utility performs the following
actions:

1. Parsing the input JSON file that is automatically generated at run time. For the schema of the
input JSON file, see the \Input and Output JSON Schema\utility-input-
schema.json file.

2. Using the SqlDataAccess utility to retrieve data.
3. Generating the output JSON file that contain the resolution of the API call. For the schema of

the output JSON file, see the \Input and Output JSON Schema\utility-output-
schema.json file.

4. Storing the input and output JSON files.

SqlDataAccess.java
The Java utility that is used to retrieve data from an SQL server according to the program ID. A
database that is named DynamicCallPgms and a table that is named ProgramToCall are used. The
following image shows the values in the ProgramToCall table:

JAR files
The sample JAR files that are used to resolve the API call in sample programs SQLCALL1 and SQLGET:
sqljdbc42.jar and json-simple-1.1.1.jar.

© Copyright IBM Corp. 2010, 2019 85

Build.bat
The sample file that can be used to compile sample Java utilities ResolveCallUtility and
SqlDataAccess. You can find the file in the Java User Exit folder.

API extensibility configuration files
The sample JSON files that are used to configure the API extensibility settings. Two types of the
configuration files are required to enable the API extensibility feature: API Config and User Exits
Config. You can find the configuration files in the AD Extensibility JSONs folder.
Api_Config.json

The sample API Config configuration file that specifies the API program name, which is SQLGET,
and the following two parameters that are required:
programKey

The value that is passed to the SQLGET program at run time through the PGM-TOCALL-ID
variable to resolve the called program.

data
The value that is passed to the SQLGET program at run time through the PGM-DATA variable to
resolve the called program.

ue-config.json
The User Exits Config configuration file that specifies the following user-exit-related settings:

• The ResolveCallUtility Java utility, which is used as a user exit to resolve the API call.
• The class path of the sqljdbc42.jar and json-simple-1.1.1.jar JAR files.
• The ### notation that is replaced with a dynamically generated input JSON file name for each

call at run time.
• The path to store the automatically generated input JSON files. The input files are parsed and

stored by the ResolveCallUtility utility. This setting is optional and for debug purposes.
• The path to store the output JSON files that are generated by the ResolveCallUtility utility.

Input JSON files
The sample input files that are automatically generated at run time, and parsed by the sample Java
utility ResolveCallUtility to retrieve the program IDs. You can find the input files in the Input and
Output JSON samples folder.

Output JSON files
The sample output files that are generated by the sample Java utility ResolveCallUtility to specify the
called program names. You can find the output files in the Input and Output JSON samples
folder.

Schema JSON files
The files that describe the schemas of the sample input and output JSON files. You can find the
schema files in the Input and Output JSON Schema folder.

Setting Up a Build with Sample Files

The API call analysis is supported by the AD extensibility feature. You can try out the feature by setting up
a build with the API extensibility sample files. For more information about the sample files, see topic “API
Extensibility Sample Files” on page 85.

Procedure

1. Create an AD project, and add the sample program files SQLCALL1.cbl and SQLGET.cbl into the
project.

• For more information about creating a project, see topic “Creating a Project” on page 10.
• For more information about adding files into a project, see topic “Adding Files to Project Folders” on

page 16.

86 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

2. Enable the API extensibility feature. After the API extensibility feature is enabled, the API Config
virtual folder is added into the project. This folder is used to store the extensibility configuration files.

a. Click Project > Settings > Extensibility.
b. In the Extensibility pane, select the "Enable API/Macro handling by using a configuration file"

check box.

c. Click OK.
3. Add the following two sample files into the API Config virtual folder of the project. The files are the

API extensibility configuration files.

• Api_Config.json
• ue-config.json

4. Modify the paths in the ue-config.json file according to your settings.

• Modify the class path of the sample JAR files according to your local environment.
• Specify a path to store the input JSON files. This setting is optional and for debug purposes.
• Specify a path to store the output JSON files.

5. Build the project. For more information about building an AD project, see topic “Building Projects” on
page 22.

With the API extensibility feature enabled, after a project build is completed, the following callgraph is
generated for the SQLCALL1 program. In addition to the standard output log file, an extensibility log file is
generated by the build process and stored in the <User folder name>\AD\comp\log folder.

Appendix 1 - API Extensibility Tutorial 87

Without the API extensibility feature enabled, after a project build is completed, the following callgraph is
generated for the SQLCALL1 program:

Extending from Sample Files to Your Projects

To support API call analysis for your own projects, you must create a user exit and API extensibility
configuration files. The API extensibility sample files are provided as examples. Follow the steps in topic
“Setting Up a Build with Sample Files” on page 86 to set up, but replace the sample files with your own
project files. For more information about the sample files, see topic “API Extensibility Sample Files” on
page 85.

Creating a user exit

The following functions must be implemented in your user exit:

• Reading and parsing an input JSON file.
• Resolving the API call by using the input JSON file and any additional metadata that is needed.
• Returning an output JSON file that specifies the resolution.

Creating API extensibility configuration files

Two types of the configuration files are required to enable the API extensibility feature: API Config and
User Exits Config.
API Config

Specifies the API calls to be analyzed, the API call parameters, and for which one of these
parameters, the values are needed.

User Exits Config
Contains a list of API calls and the path to your user exit.

88 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

Appendix 2 - Log Files Location

IBM AD Build Configuration
The log files for IBM AD Build Configuration are available at the following locations and have these name
formats:

• Installation Log

– <Installation Path> \install.log
• COM+ Applications
• Event Viewer

IBM AD Build Client
The log files for IBM AD Build Client are available at the following locations and have these name
formats:

• Installation Log

– <Installation Path>\Log
• Error messages that are displayed in IBM AD Build Client.
• Build log.

– <Project Path>\<ProjectName>\<ProjectName>.txt
• Event Viewer.
• Mainframe process (z/OS Logs).

– Scan Libraries.

- <z/OS Connection Data Path>\Logs\<z/OS name>\MF_Import.log and MF_Errors.log
– Add/Update files from Mainframe.

- < Path for the retrieved members>\ Mainframe Library Members\ <z/OS name>
\GetMFMemberSources.log, UpdateMFMemberSources.log.

- < Path for the retrieved members>\ Mainframe Library Members\
SummaryGetMFMemberSources.log, SummaryUpdateMFMemberSources.log.

• Background Actions

– Make Project.

- <Project Path>\<ProjectName>\ BatchMakeStatusFile.txt

This log file is generated when valid command line parameters are used.
- <IBM Application Discovery Build Client installation folder>\Bin\Release\
BatchMakeErrFile.txt

This log file is generated when invalid command line parameters are used.
– Update Project

- <Project Path>\<ProjectName>\ UpdateInBackgroundLog.txt
– Update Modified Mainframe Members.

- < Path for the retrieved members >\ Mainframe Library Members\
BackgroundUpdateMFMemberSources.log

© Copyright IBM Corp. 2010, 2019 89

Synchronize Members Process Log Files
The following log files are generated:

• <Project Folder>\ Synchronize\SynchronizeMembersProgress_<timestamp>.log

This log records the actual progress of the process (parsing the configuration file, validating the
configuration file). This method is useful when the process is run in background.

• <Project Folder>\ Synchronize\SynchronizeMembersSummary_<timestamp>.log

This log is generated at the end of the process and records the modified, added, and deleted member
files.

• <Project Folder>\ Synchronize\SynchronizeMembersExtendedInfo_<timestamp>.log

This log is generated at the end of the process and consolidates detailed log files. See “Detailed Log
Files Location” on page 90 for the source logs.

Detailed Log Files Location
The log files are available at the following locations:

• Scan libraries - <Project Folder>\<z/OS>\<Logs>\<z/OS name>
\MF_Import_<timestamp>.log.

• Scan libraries - <Project Folder>\<z/OS>\<Logs>\<z/OS name>
\MF_Errors_<timestamp>.log.

• Update mainframe members - <Path For The Retrieved Members>\Mainframe Library
Members\SummaryUpdateMFMemberSources_<timestamp>.log.

• Update mainframe members - <Path For The Retrieved Members>\Mainframe Library
Members\<z/OS name>\UpdateMFMemberSources_<timestamp>.log.

• Update mainframe members - <Path For The Retrieved Members>\Mainframe Library
Members\<z/OS name>\BackgroundUpdateMFMemberSources_<timestamp>.log.

• Add/Remove files from project - <Project Folder>
\UpdateInBackgroundLog_<timestamp>.txt.

• Configuration file validation - <Project Folder>\Synchronize
\ConfigFileValidation_<timestamp>.log.

90 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

Appendix 3 - Synchronize Members Configuration File
Examples

The configuration file is intended to instruct IBM AD Build Client on whether it needs to update against
specific libraries, where to add/remove the related members in/from the project (that is, which virtual
folder to use) and also which type of members IBM AD Build Client must use when you add members.
The basic assumption is that the specified libraries do not contain members that do not have to be added
even though they are there.

The configuration file must contain the following parameters:

<Project name>, <Library type >, <Library name>, <Mapped virtual folder>, <Members type >, <z/
OS> ,Application

Project name
The name of the project that needs to be synchronized with the mainframe system.

Library type
The type of the library from which members are added.

Library name
The name of the library against which the synchronization takes place.

Mapped virtual folder
The name of the project folder where the members are added/updated/deleted.

Members type
The type of the members that are synchronized. The allowed types are presented in the Member
types names table.

z/OS
The name of the connection to the mainframe system, as defined in the zOS tab of the IBM
Application Discovery Build Configuration window. For more information, see “The zOS Tab” on
page 74.

Application
The name of the application as defined for ChangeMan ZMF in zOS Configuration screen.

Following are some examples for configuration files, based on Library types.

Note: Each line in the configuration file must contain a unique <Project name>, <Library type >, <Library
name>, <Mapped virtual folder>, <z/OS> tuple. If not, the configuration file is invalidated. Also, if the
synchronization process runs for more than one Library/Project, a unique line must be added for each
project that needs synchronization.

To comment a line in the configuration file, add * at the beginning of that line.

PDS Library- <PROJECT>, PDS(MVS™), ITLS.COBOL.II, z/OS Cobol, COBOL_MVS, zOSCONN

Endevor- <PROJECT>, Endevor, SMPLTEST.EZLPROJ.EZLCOMP.COBOL.T, z/OS Cobol, COBOL_MVS,
zOSCONN

ChangeMan Baseline- <PROJECT>, SERENA CHANGEMAN BASELINE, EZL.SERENA.SYNC.EZLX.COB,
z/OS Cobol, COBOL_MVS, zOSCONN, EZLX

ChangeMan Package- <PROJECT>, SERENA CHANGEMAN PACKAGE, EZLX000020, z/OS Cobol,
COBOL_MVS, zOSCONN

Available library and SCM types- PDS(MVS), Endevor, SERENA CHANGEMAN BASELINE, SERENA
CHANGEMAN PACKAGE

Member types names:

© Copyright IBM Corp. 2010, 2019 91

Virtual Folder FileTypeName

AAuto Scheduling AAUTO_SCHEDULING

AAuto Scheduling AAUTO_DS_FLAG_REPORT

ADS Dialog ADS_DIALOG

ADS Map ADS_MAP

ADS Process ADS

Assembler ASSEMBLER

Assembler Include ASSEMBLER_INCLUDE

Assembler Macro ASM_MACRO

BMS BMS

Cobol IDMS COBOL_IDMS

Cobol IDMS Record COBOL_IDMS_RECORD

Cobol Include COPY

Configuration CSD

Configuration IMST_PGM

Configuration JCL_PGM

Configuration PGM_ALIAS

Data Area LDA

DBD DBD

IMS Map MFS

JCL JCL

JCL Control files JCL_CTRL

JCL Include JCL_INCLUDE

JCL Processes JCL_PROCLIB

Log LOG

MQ MQ_CONFIG

Natural NATURAL

Natural Include NATURALINCLUDE

Natural Map NATURALMAP

PL1 PL1

PL1 IDMS Record PL1_IDMS_RECORD

PL1 Include PL1_INCLUDE

PSB PCB

Schema SCHEMA

Subschema SUBSCHEMA

zOS Cobol COBOL_MVS

92 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

Virtual Folder FileTypeName

PreProc Before EXTENS_PREPROC_BEFORE

PreProc MetaData EXTENS_PREPROC_META

PreProc Config EXTENS_PREPROC_CONFIG

Validation configuration files examples.

ProjectMapping.txt

This file is the configuration file for defining the Project Name, Serena Application Name, and the
Subsystem that is used for the validation process. Valid means that the format is correct and the Project
does exist.

<Project Name>, <Serena Application Name>, <Subsystem> (comma separated values)

IncludesOrder.txt

This file is the configuration file for defining the Baseline Libraries types and the order, of Cobol Includes
locations. This configuration file is used later on while you set up the path for the Cobol Include folders.

<type>,<type1>,….<typen>

Note: It is EXTREMELY important to add the types in the order in which the include files must be looked
after.

FoldersMapping.txt

This file is the configuration file for defining a mapping between a Logical Folder of the project and the
type of a member that is part of the validation process. This configuration file is used during the validation
stage of the Synchronize Members process.

<Member Type>,<Logical folder>

ServicePort.txt

This file is the configuration file for defining the Service’s port. If you use a firewall, make sure that the
port is added as an exception.

<Port Number>

Appendix 3 - Synchronize Members Configuration File Examples 93

94 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

Appendix 4 - Extensibility JSON/Configuration File
Examples

Schema JSON files and examples of creating configuration JSON files are provided in this appendix.

Preprocessing Extensibility Examples
Examples are provided to show how metadata JSON files and configuration files must be created to
integrate their business-specific cases in the analysis.

The following use case is for the situation when a user uses the %Call using CICS XCTL and
#Copybook macros in a before file.

Before file example: PREPROC.bef

 IDENTIFICATION DIVISION.
 PROGRAM-ID.
PREPROC.

 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 FIRST-NAME PIC X(09).
 01 COMMAREA-FOR-PROG2 PIC X(09).
 PROCEDURE DIVISION.
 MOVE 'TEST-NAME' TO FIRST-NAME.
 CALL 'PROG1'
 USING FIRST-NAME.
 %Call using CICS XCTL
 #Copybook

After file example: PREPROC.cbl

 IDENTIFICATION DIVISION.
 PROGRAM-ID.
PREPROC.

 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 FIRST-NAME PIC X(09).
 01 COMMAREA-FOR-PROG2 PIC X(09).
 PROCEDURE DIVISION.
 MOVE 'TEST-NAME' TO FIRST-NAME.
 CALL 'PROG1'
 USING FIRST-NAME.
 EXEC CICS XCTL PROGRAM('PROG2')
 COMMAREA(COMMAREA-FOR-PROG2)
 LENGTH(38) END-EXEC.
 CALL 'PROG3'
 USING FIRST-NAME.

The following lines in the after file are from Copybook:

 CALL 'PROG3'
 USING FIRST-NAME.

JSON file used for mapping: PREPROC.meta

{
 "info":
 {
 "version":"1.0.0"
 },

 "metadata":
 [

© Copyright IBM Corp. 2010, 2019 95

 {
 "pathType": "PC",
 "beforePath":"C\\BeforeFolder\\PREPROC.bef",
 "afterPath":" C\\AfterFolder \\PREPROC.cbl",

 "diffResolution":
 [

 {
 "afterPos":
 {
 "startLine": 1,

 "endLine": 10

 },

 "beforePos": {
 "startLine": 1,

 "endLine": 10

 }

 },

 {
 "afterPos": {
 "startLine": 11,

 "endLine": 13

 },

 "beforePos":
 {
 "startLine": 11,

 "endLine": 11
 }

 },
 {
 "afterPos":
 {
 "startLine": 14,

 "endLine": 15

 },

 "beforePos": {
 "startLine": 1,

 "endLine": 2
 },
 "type": "INCLUDE",
 "path": "C\\CopybooksFolder\\Copybook",
 "includeStmtPos": {

 "includeStmtPath": " C\\BeforeFolder\\PREPROC.bef",
 "includeStmtLine": 12

 }

 }

]
 }
]
}

96 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

Configuration file example
The configuration file contains the information of the mappings between before files, metadata files, after
files, and the extensions for each type of the files:

"C\BeforeFolder1\" | "C\MetaFolder1\" | " C\AfterFolder1\" | ".bef" | ".meta" | ".cbl"
"C\BeforeFolder2\" | "C\MetaFolder2\" | "C\AfterFolder2\" | ".cbl" | ".meta" | ".after"
"C\BeforeFolder3\" | "C\MetaFolder3\" | "C\AfterFolder3\" | ".cbl" | ".meta" | ".after"

Extensibility preprocessing JSON schema
{
 "$schema": "http://json-schema.org/draft-06/schema#",
 "title": "AD Extensibility preprocessing definition file",
 "type": "object",

 "properties": {
 "info": {
 "type": "object",
 "properties": {
 "version": {
 "type": "string",
 "description": "Version of the preprocessing metadata format",
 "pattern": "^[0-9]+\\.[0-9]+\\.[0-9]+\\."
 }
 },
 "required": ["version"],
 "additionalProperties": false
 },

 "metadata": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "pathType": {
 "type": "string",
 "description": "Format of the before and after file paths: local or mainframe",
 "enum": [
 "PC",
 "MF"
]
 },
 "beforePath": {
 "type": "string",
 "description": "Path of the original source",
 "minLength": 1
 },
 "afterPath": {
 "type": "string",
 "description": "Path of the preprocessed source",
 "minLength": 1
 },
 "diffResolution": {
 "type": "array",
 "description": "Ordered list of correspondences between lines in the after file and lines in the before file",
 "items":
 {
 "oneOf": [
 {
 "$ref": "#/definitions/diffResolutionType1"
 },
 {
 "$ref": "#/definitions/diffResolutionType2"
 }
]
 }
 }
 },

 "required": ["pathType", "beforePath", "afterPath", "diffResolution"],
 "additionalProperties": false
 }
 }
 },

 "required": [
 "info",
 "metadata"
],

 "definitions":
 {
 "position": {
 "type": "object",
 "description": "Interval of lines in the source file",
 "properties": {
 "startLine": {
 "type": "integer",
 "description": "Starting line of the interval",
 "minimum": 1
 },
 "endLine": {
 "type": "integer",
 "description": "Ending line of the interval",
 "minimum": 1

 }
 },
 "required": ["startLine", "endLine"],
 "additionalProperties": false
 },

Appendix 4 - Extensibility JSON/Configuration File Examples 97

 "diffResolutionType1":
 {
 "type": "object",
 "properties": {
 "type": {
 "type": "string",
 "description": "The type of line mapping, if a special mapping is required",
 "enum": [
 "INCLUDE"
]
 },
 "includeStmtPos" : {
 "description": "Position of the include statement",
 "type": "object",
 "properties":
 {
 "includeStmtPath": {
 "type": "string",
 "description": "Path of the statement occurence",
 "minimum": 1
 },
 "includeStmtLine": {
 "type": "integer",
 "description": "Line of the statement occurence",
 "minimum": 1

 }
 },
 "required": ["includeStmtPath", "includeStmtLine"],
 "additionalProperties": false
 },
 "path": {
 "type": "string",
 "description": "Path to the source of the lines, if a special type of mapping was specified",
 "minLength": 1
 },

 "beforePos": {
 "description": "Position in the before file source",
 "$ref": "#/definitions/position"
 },
 "afterPos": {
 "description": "Position in the after file source",
 "$ref": "#/definitions/position"
 }
 },

 "required": ["type", "path", "beforePos", "afterPos" , "includeStmtPos"],
 "additionalProperties": false
 },

 "diffResolutionType2": {
 "type": "object",
 "properties": {
 "beforePos": {
 "description": "Position in the before file source",
 "$ref": "#/definitions/position"
 },
 "afterPos": {
 "description": "Position in the after file source",
 "$ref": "#/definitions/position"
 }
 },

 "required": ["beforePos", "afterPos"],
 "additionalProperties": false
 }
 }
}

API/Macro Call Extensibility Examples
API Call/Macro Extensibility Use Cases

The purpose of this chapter is to help users understand how the Configuration files must be created in
order to integrate their business specific cases in the analysis.

API Programs for calling utilities Use case

This use case is created to cover the situation when the API programs are used to call a program that is
defined through one of the initial call parameters. The following represents the Sample1 Cobol program:

IDENTIFICATION DIVISION.
 PROGRAM-ID. Sample1.
 *
 ENVIRONMENT DIVISION.
 *
 DATA DIVISION.
 *
 WORKING-STORAGE SECTION.
 01 VAR1 PIC X(06).
 01 VAR2 PIC X(06).
 01 VAR3 PIC X(08).

98 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

 01 VAR4 PIC X(08).
 01 X PIC X(08).

 PROCEDURE DIVISION.
 MOVE 'VALUE1' TO VAR1
 MOVE 'VALUE2' TO VAR2
 CALL 'API1' USING VAR1, VAR2, VAR3, VAR4.

The Sample1 Cobol program contains a call to a specific API program named API1.

In case a call to the API1 program has to be interpreted as a call to the value of the first call parameter
(VALUE1) , the following Configuration Files containing the rules for the new resolution are to be used.

Note: The API_Config.json file specifies that the fist parameter has to be saved with its value while for
the rest of parameters there is no need for their values.

{
 "info":
 {
 "version":"5.0.4.1"
 },
 "extensions":
 [
 {
 "apiKey": "a1",
 "name": "API1",
 "type": "call",
 "parameters":
 [
 {
 "position":1,
 "label": "program",
 "resolve": true
 },
 {
 "position":2,
 "label": "accessType",
 "resolve": false
 },
 {
 "position":3,
 "label": "outputVariable",
 "resolve": false
 },
 {
 "position":4,
 "label": "inputVariable",
 "resolve": false
 }
]
 }
]
}

The ue-config.json file specifies the type of user exit file (for v5.0.4, only .Json file is supported) and
the path where the user exit file is located.

{
 "schemaVersion":"1.0.1",
 "documentVersion":"1.0.1",
 "ueConfig" :[
 {"name": "uejson",
 "type":"file-json",
 "location":"location/of/the/file/which/contains/the/resolution.json",
 "appliesTo":["a1"]
 }
]
}

The resolution.json file specifies that the API1 call is replaced with a call to a Cobol program, it's
name is resolved in the first parameter and parameters 2, 3 and 4 are only referred.

{
 "schemaVersion": "1.0.1",
 "documentVersion": "1.0.1",
 "entries": [{

Appendix 4 - Extensibility JSON/Configuration File Examples 99

 "input": {
 "apiKey": "a1",
 "apiText": "API1",
 "params": [{
 "paramKey": "program",
 "paramMode": "byValue"
 },
 {
 "paramKey": "accessType",
 "paramMode": "byRef"
 },
 {
 "paramKey": "outputVariable",
 "paramMode": "byRef"
 },
 {
 "paramKey": "inputVariable",
 "paramMode": "byRef"
 }
]
 },
 "resolutions": [{
 "action": "call",
 "target": {
 "resourceType": "CobolProgram",
 "paramKey": "program",
 "paramMode": "byValue",
 "read": true
 },
 "resources": [{
 "resourceType": "Variable",
 "paramKey": "accessType",
 "paramMode": "byRef",
 "read": true
 },
 {
 "resourceType": "Variable",
 "paramKey": "outputVariable",
 "paramMode": "byRef",
 "read": true
 },
 {
 "resourceType": "Variable",
 "paramKey": "inputVariable",
 "paramMode": "byRef",
 "read": true
 }
]
 }]
 }]
}

API Programs for Data Access Use Case

This use case is created to cover the situation when the API programs are used to perform SQL Select and
SQL Delete on specified fields from TABLE1 and TABLE2 SQL tables defined in the Cobol program. The
following represents the Sample2 Cobol program.

IDENTIFICATION DIVISION.
 PROGRAM-ID. Sample2.
 *
 ENVIRONMENT DIVISION.
 *
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 EXEC SQL DECLARE TABLE1 TABLE
 (COL11 CHAR(7),
 COL12 CHAR(10)
)END-EXEC.

 EXEC SQL DECLARE TABLE2 TABLE
 (COL21 CHAR(7),
 COL22 CHAR(10)
)END-EXEC.

 01 VALUE1-DATA.
 03 VALUE1-DATA PIC S9(6).
 01 VALUE2-DATA.
 03 VALUE2-DATA PIC S9(6).

100 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

 01 FIRST-PARAM.
 03 ACCESS-ID PIC S9(6).

 PROCEDURE DIVISION.

 MOVE 'VALUE1' TO ACCESS-ID
 MOVE 'AAAAAA' TO VALUE1-DATA
 CALL 'API2' USING FIRST-PARAM
 VALUE1-DATA.

 MOVE 'VALUE2' TO ACCESS-ID
 MOVE 'AAAAAA' TO VALUE2-DATA
 CALL 'API2' USING FIRST-PARAM
 VALUE2-DATA.

The first call to the API2 program has to be interpreted as an SQL Select performed on fields COL11 and
COL12 from TABLE1 SQL table. This action is specified by the value of the second API call parameter
VALUE1.

The second call to the API2 program has to be interpreted as an SQL Delete performed on fields from
TABLE SQL table. This action is specified by the value of the second API call parameter VALUE2.

The second call to the API2 program has to be interpreted as an SQL Delete performed on fields from
TABLE SQL table. This action is specified by the value of the second API call parameter VALUE2.

{
 "info":
 {
 "version":"5.0.4.1"
 },
 "extensions":
 [
 {
 "apiKey":"a1",
 "name":"API2",
 "type": "call",
 "parameters":
 [{
 "position":1,
 "label": "p1",
 "resolve": true,
 "locator":{
 "offset":1,
 "length":9
 }
 },
 {
 "position":2,
 "label": "p2",
 "resolve": true,
 "locator":{
 "offset":1,
 "length":9
 }
 },
 {
 "position":2,
 "label": "p3",
 "resolve": false
 },
 {
 "position":2,
 "label": "p4",
 "resolve": false
 }
]
 }
]
}

The ue-config.json file specifies the type of user exit file (for v5.0.4, only .Json file is supported)
and the path where the user exit file is located.

{
 "schemaVersion":"1.0.1",
 "documentVersion":"1.0.1",
 "ueConfig" :[

Appendix 4 - Extensibility JSON/Configuration File Examples 101

 {"name": "uejson",
 "type":"file-json",
 "location":"location from disk/resolution.json",
 "appliesTo":["a1"]
 }
]
}

The resolution.json file specifies:

• if VALUE1 is found in parameter values the API2 call will become a SQL Select on COL11 and COL12
fields from TABLE1 SQL Table.

• if VALUE2 is found in parameter values the API2 call will become a SQL Delete on COL21 field from
TABLE2 SQL Table.

{
 "schemaVersion": "1.0.1",
 "documentVersion": "1.0.1",
 "entries": [{
 "input": {
 "apiKey": "a1",
 "apiText": "API2",
 "params": [
 {
 "value": "VALUE1"
 },
 {
 "paramKey": "p2",
 "paramMode": "byRef"
 },
 {
 "paramKey": "p3",
 "paramMode": "byRef"
 },
 {
 "paramKey": "p4",
 "paramMode": "byRef"
 }
]
 },
 "resolutions": [
 {
 "action": "SQLSelect",
 "resources": [
 {
 "resourceType": "SQLTable",
 "value": "TABLE1",
 "read": true
 }
],
 "clauses": [
 {
 "clause": "into",
 "from":
 {
 "resourceType": "SQLField",
 "qualifiers": [
 "TABLE1"
],
 "value": "COL11",
 "read": true
 },
 "to": {
 "resourceType": "Variable",
 "paramKey": "p2",
 "paramMode": "byRef",
 "read": false
 }
 },
 {
 "clause": "into",
 "from":
 {
 "resourceType": "SQLField",
 "qualifiers": [
 "TABLE1"
],
 "value": "COL12",

102 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

 "read": true
 },
 "to": {
 "resourceType": "Variable",
 "paramKey": "p3",
 "paramMode": "byRef",
 "read": false
 }
 },
 {
 "clause": "where",
 "from":
 {
 "resourceType": "SQLField",
 "qualifiers": [
 "TABLE1"
],
 "value": "COL11",
 "read": false
 },
 "to":{
 "resourceType": "Variable",
 "paramKey": "p4",
 "paramMode": "byRef",
 "read": true
 }
 }
]
 }]
},{
 "input": {
 "apiKey": "a1",
 "apiText": "API2",
 "params": [
 {
 "value": "VALUE2"
 },
 {
 "paramKey": "p2",
 "paramMode": "byRef"
 },
 {
 "paramKey": "p3",
 "paramMode": "byRef"
 },
 {
 "paramKey": "p4",
 "paramMode": "byRef"
 }
]
 },
 "resolutions": [
 {
 "action": "SQLDelete",
 "resources": [
 {
 "resourceType": "SQLTable",
 "value": "TABLE2",
 "read": true
 }
],
 "clauses": [
 {
 "clause": "where",
 "from":
 {
 "resourceType": "SQLField",
 "qualifiers": [
 "TABLE2"
],
 "value": "COL21",
 "read": false
 },
 "to":{
 "resourceType": "Variable",
 "paramKey": "p4",
 "paramMode": "byRef",
 "read": false
 }
 }]
 }]

Appendix 4 - Extensibility JSON/Configuration File Examples 103

}]
}.

The following json schemas might help you create the configurations files.

Schema for API_Config.json
{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "AD Extensebility extensions definition file",
 "type": "object",
 "properties": {
 "info": {
 "type": "object",
 "properties": {
 "version": {
 "type": "string",
 "description": "The extension file version",
 "pattern": "^[0-9]+\\.[0-9]+\\.[0-9]+"
 }
 },
 "required": [
 "version"
]
 },
 "extensions": {
 "type": "array",
 "minItems": 1,
 "items": {
 "$ref": "#/definitions/Extension"
 }
 }
 },
 "required": [
 "info",
 "extensions"
],
 "definitions": {
 "Extension": {
 "oneOf": [
 {
 "$ref": "#/definitions/ExtensionType1"
 },
 {
 "$ref": "#/definitions/ExtensionType2"
 },
 {
 "$ref": "#/definitions/ExtensionType3"
 }
]
 },
 "LocatorType1": {
 "type": "object",
 "description": "Locator specifying the parameter value from a record's child",
 "properties": {
 "name": {
 "type": "string",
 "description": "Name of the record child from which to take the parameter value",
 "minLength": 1
 }
 },
 "required": [
 "name"
],
 "additionalProperties": false
 },
 "LocatorType2": {
 "type": "object",
 "description": "Locator specifying the parameter value by offset and length",
 "properties": {
 "offset": {
 "type": "integer",
 "description": "Starting offset for the value",
 "minimum": 0
 },
 "length": {
 "type": "integer",
 "description": "Length of the value to be read",
 "minimum": 0
 }
 },
 "required": [
 "offset",
 "length"
],
 "additionalProperties": false
 },
 "ExtensionType1": {
 "type": "object",
 "properties": {
 "apiKey": {
 "type": "string",
 "minLength": 1
 },
 "name": {
 "type": "string",
 "minLength": 1
 },
 "type": {
 "type": "string",
 "enum": [
 "call"
],
 "description": "Extension for call statements",
 "minLength": 1

104 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

 },
 "parameters": {
 "type": "array",
 "minItems": 1,
 "items": {
 "$ref": "#/definitions/ParameterType1"
 }
 }
 },
 "required": [
 "apiKey",
 "name",
 "type",
 "parameters"
],
 "additionalProperties": false
 },
 "ExtensionType2": {
 "type": "object",
 "properties": {
 "apiKey": {
 "type": "string",
 "minLength": 1
 },
 "name": {
 "type": "string",
 "minLength": 1
 },
 "type": {
 "type": "string",
 "enum": [
 "cics"
],
 "description": "Extension for cics statements",
 "minLength": 1
 },
 "parameters": {
 "type": "array",
 "minItems": 1,
 "items": {
 "$ref": "#/definitions/ParameterType2"
 }
 }
 },
 "required": [
 "apiKey",
 "name",
 "type",
 "parameters"
],
 "additionalProperties": false
 },
 "ExtensionType3": {
 "type": "object",
 "properties":
 {
 "apiKey":
 {
 "type": "string",
 "minLength": 1
 },
 "name":
 {
 "type": "string",
 "minLength": 1
 },
 "type": {
 "type": "string",
 "enum": [
 "JclPgmCall"
],
 "description": "Extension for JCL call statements",
 "minLength": 1
 },
 "parameters": {
 "type": "array",
 "minItems": 1,
 "items": {
 "$ref": "#/definitions/ParameterType3"
 }
 }
 },
 "required": [
 "apiKey",
 "name",
 "type",
 "parameters"
],
 "additionalProperties": false
 },
 "ParameterType1": {
 "type": "object",
 "description": "Parameter for call statements",
 "properties": {
 "position": {
 "type": "integer",
 "description": "Position of the parameter in the call",
 "minimum": 1
 },
 "label": {
 "type": "string",
 "description": "Identifier for the parameter",
 "minLength": 1
 },
 "resolve": {
 "type": "boolean",
 "description": "Specify whether to determine the values of the parameter or not",
 "default": true
 },

Appendix 4 - Extensibility JSON/Configuration File Examples 105

 "optional": {
 "type": "boolean",
 "description": "Specify whether the parameter is optional or not",
 "default": false
 },
 "locator": {
 "oneOf": [
 {
 "$ref": "#/definitions/LocatorType1"
 },
 {
 "$ref": "#/definitions/LocatorType2"
 }
]
 }
 },
 "required": [
 "position",
 "label",
 "resolve"
],
 "additionalProperties": false
 },
 "ParameterType2": {
 "type": "object",
 "description": "Parameter for CICS statements",
 "properties": {
 "name": {
 "type": "string",
 "description": "Name of the parameter in the CICS statement",
 "minLength": 1
 },
 "label": {
 "type": "string",
 "description": "Identifier for the parameter",
 "minLength": 1
 },
 "resolve": {
 "type": "boolean",
 "description": "Specify whether to determine the values of the parameter or not",
 "default": true
 },
 "optional": {
 "type": "boolean",
 "description": "Specify whether the parameter is optional or not",
 "default": false
 },
 "locator": {
 "oneOf": [
 {
 "$ref": "#/definitions/LocatorType1"
 },
 {
 "$ref": "#/definitions/LocatorType2"
 }
]
 }
 },
 "required": [
 "name",
 "label",
 "resolve"
],
 "additionalProperties": false
 },

 "ParameterType3": {
 "type": "object",
 "description": "Parameter for JCL calls",
 "properties": {
 "name":
 {
 "type": "string",
 "description": "Name of the parameter in the JCL call",
 "minLength": 1
 },
 "label":
 {
 "type": "string",
 "description": "Identifier for the parameter",
 "minLength": 1
 },
 "optional": {
 "type": "boolean",
 "description": "Specify whether the parameter is optional or not",
 "default": false
 }
 },
 "required": [
 "name",
 "label"
],
 "additionalProperties": false
 }
 }
}

Schema for ue-config.json
{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "version": "1.0.1",
 "type": "object",
 "description": "An ordered list of user exits",
 "properties": {
 "schemaVersion": {
 "description": "This json schema version",
 "$ref": "#/definitions/versionDef"

106 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

 },
 "documentVersion": {
 "description": "The user exit json file version",
 "$ref": "#/definitions/versionDef"
 },
 "ueConfig": {
 "type": "array",
 "description": "An array which contains user exit configurations",
 "items": {
 "type": "object",
 "description": "An user exit configuration object.",
 "properties": {
 "name": {
 "type": "string",
 "description": "A name for this user exit configuration."
 },
 "type": {
 "type": "string",
 "description": "The user exit type",
 "enum": [
 "file-json",
 "utility",
 "dependency-file-json",
 "dependency-utility",
 "jcl-file-json",
 "jcl-utility"
]
 },
 "location": {
 "type": "string",
 "description": "The path of the file containing the resolutions (applies for file-json type only)."
 },
 "appliesTo": {
 "type": "array",
 "description": "An array of API (defined in API config json) to which this user-exit is applied.",
 "items": {
 "type": "string",
 "description": "An extensibility API key as defined in the API config json file."
 },
 "minItems": 1,
 "uniqueItems": true
 },
 "command": {
 "type": "array",
 "description": "An array of strings used to call an external utility in order to obtain the user exit resolutions.",
 "items": {
 "type": "string"
 }
 }
 },
 "required": [
 "name",
 "type",
 "appliesTo"
],
 "uniqueItems": true
 }
 }
 },
 "required": [
 "ueConfig",
 "schemaVersion",
 "documentVersion"
],
 "definitions": {
 "versionDef": {
 "type": "string",
 "description": "Schema/Document versioning pattern",
 "pattern": "^[0-9]{1,3}\\.[0-9]{1,3}(\\.[0-9]{1,3})?$"
 }
 }
}

Schema for resolution.json
{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "version": "1.0.2",
 "type": "object",
 "description": "The json schema for a file-json based AD resolutions.",
 "properties": {
 "schemaVersion": {
 "description": "This json schema version.",
 "$ref": "#/definitions/versionDef"
 },
 "documentVersion": {
 "description": "The user exit json file version.",
 "$ref": "#/definitions/versionDef"
 },
 "entries": {
 "type": "array",
 "description": "An array containing the user exit content.",
 "items": {
 "type": "object",
 "description": "A user exit content object.",
 "properties": {
 "resolutions": {
 "type": "array",
 "description": "An array which contains the user exit resolution objects.",
 "items": {
 "anyOf": [
 {
 "$ref": "#/definitions/localResolutionDef"
 },
 {
 "$ref": "#/definitions/externalResolutionDef"
 },
 {
 "$ref": "#/definitions/callLocalResolutionDef"
 },
 {
 "$ref": "#/definitions/callExternalResolutionDef"
 }
]
 }
 },
 "input": {
 "type": "object",
 "description": "An object which contains the inputs for the user exit.",
 "properties": {
 "apiKey": {
 "type": "string",
 "description": "The parameter key as defined in the API config json."
 },
 "apiText": {
 "type": "string",
 "description": "The name of the API program as defined in the API config json."
 },

Appendix 4 - Extensibility JSON/Configuration File Examples 107

 "params": {
 "type": "array",
 "description": "An array of 'value' objects definitions. The number and the order of the items MUST be the same with the
number and the order of the parameters defined in the API config json",
 "items": {
 "anyOf": [
 {
 "$ref": "#/definitions/paramValue"
 },
 {
 "$ref": "#/definitions/directValue"
 },
 {
 "$ref": "#/definitions/optionalValue"
 }
]
 }
 }
 },
 "required": [
 "apiKey",
 "params"
],
 "additionalProperties": false
 }
 },
 "additionalProperties": false,
 "required": [
 "resolutions",
 "input"
]
 }
 }
 },
 "required": [
 "entries",
 "schemaVersion",
 "documentVersion"
],
 "definitions": {
 "versionDef": {
 "type": "string",
 "description": "A schema/document versioning pattern.",
 "pattern": "^[0-9]{1,3}\\.[0-9]{1,3}(\\.[0-9]{1,3})?$"
 },
 "externalActionsDef": {
 "description": "",
 "type": "string",
 "enum": [
 "CICSStart",
 "CICSReturn",
 "IMSStartTransaction"
]
 },
 "localActionsDef": {
 "description": "",
 "type": "string",
 "enum": [
 "CICSStart",
 "CICSReturn",
 "SQLSelect",
 "SQLInsert",
 "SQLDelete",
 "SQLUpdate",
 "FileRead",
 "FileWrite",
 "FileRewrite",
 "FileDelete",
 "FileSort",
 "CICSFileRead",
 "CICSFileWrite",
 "CICSFileRewrite",
 "CICSFileDelete",
 "CICSSendMap",
 "CICSReceiveMap",
 "IMSSendMap",
 "IMSReceiveMap",
 "IMSStartTransaction",
 "IMSDBRead",
 "IMSDBReadNext",
 "IMSDBInsert",
 "IMSDBDelete",
 "IMSDBUpdate"
]
 },
 "paramValue": {
 "type": "object",
 "description": "A generic 'value' object which allows the user exit to define values for the resolution or the input values with references
to the paramKey.",
 "properties": {
 "paramKey": {
 "type": "string",
 "description": "The parameter key as defined in the API config json file."
 },
 "paramMode": {
 "type": "string",
 "description": "A marker which defines how the parameter value is read by the resolver.",
 "enum": [
 "byValue",
 "byRef"
]
 }
 },
 "additionalProperties": false,
 "required": [
 "paramKey",
 "paramMode"
]
 },
 "directValue": {
 "type": "object",
 "description": "A generic 'value' object which allows the user exit to define values for the resolution or the input values without
referering to a specific paramKey.",
 "properties": {
 "value": {
 "type": "string",
 "description": "The value for this 'value' object."
 }
 },
 "additionalProperties": false,
 "required": [
 "value"
]
 },
 "optionalValue": {
 "type": "object",
 "description": "A generic 'value' object which allows the user exit to define values for the input values which will be ignored by the AD
Resolver",
 "properties": {
 "ignore": {
 "type": "boolean",

108 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

 "description": "If true the 'value' object MUST be ignored by the AD Resolver."
 }
 },
 "additionalProperties": false,
 "required": [
 "ignore"
]
 },
 "resourceTypeDef": {
 "type": "object",
 "description": "An object which will contain a resource type definition for resolutions.",
 "properties": {
 "read": {
 "type": "boolean",
 "description": "A marker for the resource behavior (true: the resource is read, false - the resource is written.)"
 },
 "resourceType": {
 "type": "string",
 "description": "The resource type",
 "enum": [
 "CobolProgram",
 "PL/1Program",
 "AssemblerProgram",
 "Variable",
 "CICSTran",
 "SQLTable",
 "SQLField",
 "File",
 "CICSMap",
 "IMSMessageDescriptor",
 "IMSTransaction",
 "IMSDBSegment"
]
 },
 "paramKey": {
 "type": "string",
 "description": "The parameter key as defined in the API config json file."
 },
 "paramMode": {
 "type": "string",
 "description": "A marker which defines how the parameter value is read by the resolver.",
 "enum": [
 "byValue",
 "byRef"
]
 },
 "qualifiers": {
 "type": "array",
 "description": "The strings will be used to qualify the resource. It is required for resourceType SQLField, IMSMessageDescriptor,
IMSDBSegment",
 "items": {
 "type": "string",
 "description": "A string qualifier."
 }
 },
 "value": {
 "type": "string",
 "description": "A string value for the resource type."
 },
 "annText": {
 "type": "string",
 "description": "A string which defines the text of the annotation."
 },
 "annKeyword": {
 "type": "string",
 "description": "A string which defines the key of the annotation."
 }
 },
 "additionalProperties": false
 },
 "clausesDef": {
 "type": "array",
 "description": "An array containing SQL statements related options.",
 "items": {
 "type": "object",
 "description": "",
 "properties": {
 "clause": {
 "type": "string",
 "description": "The relationship between the 'from' and the 'to' 'value' objects.",
 "enum": [
 "into",
 "where",
 "set"
]
 },
 "from": {
 "description": "A SQLField value object",
 "$ref": "#/definitions/resourceTypeDef"
 },
 "to": {
 "description": "A host variable 'value' object.",
 "$ref": "#/definitions/resourceTypeDef"
 }
 },
 "additionalProperties": false
 }
 },
 "targetDef": {
 "description": "The targeted resource (if any). Will be deprecated in the next versions.",
 "$ref": "#/definitions/resourceTypeDef"
 },
 "localResolutionDef": {
 "properties": {
 "action": {
 "$ref": "#/definitions/localActionsDef"
 },
 "resources": {
 "type": "array",
 "description": "An array containing the user exit values for the given resolution.",
 "items": {
 "description": "",
 "$ref": "#/definitions/resourceTypeDef"
 }
 },
 "clauses": {
 "$ref": "#/definitions/clausesDef"
 }
 },
 "additionalProperties": false,
 "required": [
 "action"
]
 },
 "externalResolutionDef": {
 "properties": {
 "action": {
 "$ref": "#/definitions/externalActionsDef"
 },
 "location": {
 "type": "string",

Appendix 4 - Extensibility JSON/Configuration File Examples 109

 "description": "A string which defines the location (another AD project or a CICS region) where the API action is performed."
 },
 "locationType": {
 "type": "string",
 "description": "The AD project name or a CICS region.",
 "enum": [
 "application",
 "CICSRegion"
]
 },
 "resources": {
 "type": "array",
 "description": "An array containing the user exit values for the given resolution.",
 "items": {
 "description": "",
 "$ref": "#/definitions/resourceTypeDef"
 }
 }
 },
 "additionalProperties": false,
 "required": [
 "action", "location", "locationType"
]
 },
 "callLocalResolutionDef": {
 "properties": {
 "action": {
 "enum": [
 "call"
]
 },
 "target": {
 "$ref": "#/definitions/targetDef"
 },
 "resources": {
 "type": "array",
 "description": "An array containing the user exit values for the given resolution.",
 "items": {
 "description": "",
 "$ref": "#/definitions/resourceTypeDef"
 }
 }
 },
 "additionalProperties": false,
 "required": [
 "action",
 "target"
]
 },
 "callExternalResolutionDef": {
 "properties": {
 "action": {
 "enum": [
 "call"
]
 },
 "location": {
 "type": "string",
 "description": "A string which defines the location (another AD project or a CICS region) where the API action is performed."
 },
 "locationType": {
 "type": "string",
 "description": "The AD project name or a CICS region.",
 "enum": [
 "application",
 "CICSRegion"
]
 },
 "target": {
 "$ref": "#/definitions/targetDef"
 },
 "resources": {
 "type": "array",
 "description": "An array containing the user exit values for the given resolution.",
 "items": {
 "description": "",
 "$ref": "#/definitions/resourceTypeDef"
 }
 }
 },
 "additionalProperties": false,
 "required": [
 "action",
 "location",
 "locationType",
 "target"
]
 }
 }
}

JCL Call Extensibility Examples

JCL Call Extensibility Use Case

The purpose of this chapter is to help users understand how the Configuration files must be created in
order to integrate their business-specific cases in the analysis.

This use case is created to cover the situation when a JCL Call to an API program is translated into calls to
other programs, based on the parameter value received by the API program. The following represents the
JOBSAMPLE JCL job:

//JOBSAMPLE JOB ,'DAIICHI LIFE SUPPORT',
// CLASS=C,
// MSGCLASS=P,
// COND=(4,LT),
// REGION=4096K
//STP010 EXEC PGM=APIJCL
//DDOUT1 DD DSN=PJ.ABC.DATASET1,

110 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

// UNIT=(MTLIB,,DEFER),
// DISP=(NEW,KEEP),
// DCB=TRTCH=C,
// LABEL=(,SL),
// VOL=SER=DXXXXX
//APIPARAM DD *
1111 ABC --TEST-- VALUE
//

The JOBSAMPLE JCL job contains a call to a specific API program named APIJCL.

To resolve the Call to "APIJCL", the JCL_Config.json file specifies that it is necessary to resolve the
value of the APIPARAM parameter.

Note: This JSON contains as parameters the corresponding name of the JCL DD card used in the JCL Call.

{
 "info": {
 "version": "5.0.3"
 },
 "extensions":
 [
 {
 "apiKey":"a1",
 "name": "APIJCL",
 "type": "JclPgmCall",

 "parameters":
 [
 {
 "name": "APIPARAM",
 "label": "param1"
 }
]
 }

]
}

The ue-config.json file specifies the type of user exit file and the path where the user exit file for a
certain API is located.

{
 "schemaVersion":"1.0.1",
 "documentVersion":"1.0.1",
 "ueConfig" :[
 {"name": "uejson",
 "type":"jcl-file-json",
 "location":"D:/EZSourceBuildProjects/API_JCL_PROJECTS/DOC_JCL_DEP/API Config/Resolutions/
resolutionJCL.json",
 "appliesTo":["a1"]
 }
]
}

The resolutionJCL.json file specifies that, if the value of the received parameter is "1111 ABC--
TEST--VALUE", the JCL Call to "APIJCL" is replaced with calls to PROGRAM1 and PROGRAM2 COBOL
programs.

Note:

• The values of the parameters present in the resolutionJCL.json file must be identical to the values
of the corresponding DD cards in the JCL, considering a maximum of 71 characters on the line.

• The values of the DD cards can come either inline DD * or from a controlled file DD DSN=<file
path>.

The following annotations are present in the resolutionJCL.json file:

• For PROGRAM1 - annotation "annText": "ANNOTATION1" and annotation keyword
"annKeyword" : "API_RESOLUTION".

Appendix 4 - Extensibility JSON/Configuration File Examples 111

• For PROGRAM2 - annotation "annText": "ANNOTATION2" and annotation keyword
"annKeyword" : "API_RESOLUTION".

{
 "schemaVersion": "1.0",
 "documentVersion": "1.0",
 "entries": [{
 "input": {
 "apiKey": "a1",
 "apiText": "APIJCL",
 "params": [{
 "value": "1111 ABC--TEST--VALUE"
 }

]
 },
 "resolutions": [{
 "action": "call",
 "target": {
 "resourceType": "CobolProgram",
 "value": "PROGRAM1",
 "read": true
 },
 "annText": "ANNOTATION1",
 "annKeyword" : "API_RESOLUTION"
 },
 {
 "action": "call",
 "target": {
 "resourceType": "CobolProgram",
 "value": "PROGRAM2",
 "read": true
 },
 "annText": "ANNOTATION2",
 "annKeyword" : "API_RESOLUTION"
 }]
 }
]
}

JSON Schemas

The API_Config.json schema, present in “API/Macro Call Extensibility Examples ” on page 98
introduces a new API type "type":"JclPgmCall".

The ue-config.json schema, present in “API/Macro Call Extensibility Examples ” on page 98
introduces a new API type "type":"jcl-file-json".

Schema for JCL resolutionJCL.json
{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "version": "1.0.0",
 "type": "object",
 "description": "The json schema for a jcl-json based AD resolutions.",
 "properties": {
 "schemaVersion": {
 "description": "This json schema version.",
 "$ref": "#/definitions/versionDef"
 },
 "documentVersion": {
 "description": "The user exit json file version.",
 "$ref": "#/definitions/versionDef"
 },
 "entries": {
 "type": "array",
 "description": "An array containing the user exit content.",
 "items": {
 "type": "object",
 "description": "A user exit content object.",
 "properties": {
 "resolutions": {
 "type": "array",
 "description": "An array which contains the user exit resolution objects.",
 "items": { "$ref": "#/definitions/callLocalResolutionDef" }
 },
 "input": {
 "type": "object",
 "description": "An object which contains the inputs for the user exit.",
 "properties": {
 "apiKey": {
 "type": "string",
 "description": "The parameter key as defined in the JCLAPI config json."
 },
 "apiText": {
 "type": "string",
 "description": "The name of the API program as defined in the JCLAPI config json."
 },
 "params": {
 "type": "array",
 "description": "An array of 'value' objects definitions. The number and the order of the items MUST be the same with the
number and the order of the parameters defined in the API config json",
 "items": {
 "anyOf": [

112 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

 {
 "$ref": "#/definitions/paramValue"
 },
 {
 "$ref": "#/definitions/directValue"
 }
]
 }
 }
 },
 "required": [
 "apiKey",
 "params"
],
 "additionalProperties": false
 }
 },
 "additionalProperties": false,
 "required": [
 "resolutions",
 "input"
]
 }
 }
 },
 "required": [
 "entries",
 "schemaVersion",
 "documentVersion"
],
 "definitions": {
 "versionDef": {
 "type": "string",
 "description": "A schema/document versioning pattern.",
 "pattern": "^[0-9]{1,3}\\.[0-9]{1,3}(\\.[0-9]{1,3})?$"
 },
 "paramValue": {
 "type": "object",
 "description": "A generic 'value' object which allows the user exit to define values for the resolution or the input values with references
to the paramKey.",
 "properties": {
 "paramKey": {
 "type": "string",
 "description": "The parameter key as defined in the API config json file."
 },
 "paramMode": {
 "type": "string",
 "description": "A marker which defines how the parameter value is read by the resolver.",
 "enum": [
 "byValue",
 "byRef"
]
 }
 },
 "additionalProperties": false,
 "required": [
 "paramKey",
 "paramMode"
]
 },
 "directValue": {
 "type": "object",
 "description": "A generic 'value' object which allows the user exit to define values for the resolution or the input values without
referering to a specific paramKey.",
 "properties": {
 "value": {
 "type": "string",
 "description": "The value for this 'value' object."
 }
 },
 "additionalProperties": false,
 "required": [
 "value"
]
 },
 "resourceTypeDef": {
 "type": "object",
 "description": "An object which will contain a resource type definition for resolutions.",
 "properties": {
 "read": {
 "type": "boolean",
 "description": "A marker for the resource behavior (true: the resource is read, false - the resource is written.)"
 },
 "resourceType": {
 "type": "string",
 "description": "The resource type",
 "enum": [
 "CobolProgram",
 "PL/1Program",
 "AssemblerProgram"
]
 },
 "paramKey": {
 "type": "string",
 "description": "The parameter key as defined in the JCLAPI config json file."
 },
 "paramMode": {
 "type": "string",
 "description": "A marker which defines how the parameter value is read by the resolver.",
 "enum": [
 "byValue",
 "byRef"
]
 },
 "qualifiers": {
 "type": "array",
 "description": "An array of strings. The strings will be used to qualify the resource.",
 "items": {
 "type": "string",
 "description": "A string qualifier."
 }
 },
 "value": {
 "type": "string",
 "description": "A string value for the resource type."
 },
 "annText": {
 "type": "string",
 "description": "A string which defines the key of the annotation."
 },
 "annKeyword": {
 "type": "string",
 "description": "A string which defines the text of the annotation."
 }
 },
 "additionalProperties": false
 },
 "targetDef": {
 "description": "The targeted resource (if any). Will be deprecated in the next versions.",
 "$ref": "#/definitions/resourceTypeDef"
 },

Appendix 4 - Extensibility JSON/Configuration File Examples 113

 "callLocalResolutionDef": {
 "properties": {
 "action": {
 "enum": [
 "call"
]
 },
 "target": {
 "$ref": "#/definitions/targetDef"
 }
 },
 "additionalProperties": false,
 "required": [
 "action",
 "target"
]
 }
 }
}

Dependency Extensibility Examples

Dependency Extensibility Use Case

The purpose of this use case is to help users understand how the Configuration files must be created to
integrate their business-specific cases in the analysis.

This use case is created to cover the situation when a user creates mappings between transactions and
programs.

The API_Dependency.json file specifies the APIs that return mappings between resources.

Note: Each API has a name and label. The APIs for dependencies have the attribute
"type":"post_build".

{
 "info":
 {
 "version":"5.1.0"
 },
 "extensions":
 [
 {
 "apiKey":"a2",
 "name":"MAPPING_TRAN",
 "type":"post_build"
 }
]
}

The ue-config.json file specifies the type of user exit file and the path where the user exit file for a
certain dependency API is located.

{
 "schemaVersion":"1.0.1",
 "documentVersion":"1.0.1",
 "ueConfig" :[
 {"name": "uejson",
 "type":"dependency-file-json",
 "location":"D:/EZSourceBuildProjects/API_JCL_PROJECTS/DOC_JCL_DEP/API Config/Resolutions/
resolutionDEP.json",
 "appliesTo":["a2"]
 }
]
}

The resolutionDEP.json file contains the mapping of resources that are returned by the
"MAPPING_TRAN" API. In this specific case the mappings are as follows:

• Transaction "TRAN1" to program "PROGRAM1"
• Transaction "TRAN2" to program "PROGRAM2"

The following annotations are present in the resolutionDEP.json file:

• For PROGRAM1 - annotation "annText": "ANNOTATION3" and annotation keyword
"annKeyword" : "API_RESOLUTION".

114 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

• For PROGRAM2 - annotation "annText": "ANNOTATION4" and annotation keyword
"annKeyword" : "API_RESOLUTION".

The AD analysis shows the links between the mentioned resources.

{
 "schemaVersion": "1.0.0",
 "documentVersion": "1.0.0",
 "entries": [{
 "input": {
 "apiKey": "a2",
 "apiText": "MAPPING_TRAN"
 },
 "resolutions": [{
 "action": "dependency",
 "source": {
 "resourceType": "GenericTransaction",
 "value": "TRAN1"
 },
 "target": {
 "resourceType": "CobolProgram",
 "value": "PROGRAM1",
 "annText": "ANNOTATION3",
 "annKeyword" : "API_RESOLUTION"
 }
 },{
 "action": "dependency",
 "source": {
 "resourceType": "GenericTransaction",
 "value": "TRAN2"
 },
 "target": {
 "resourceType": "CobolProgram",
 "value": "PROGRAM2",
 "annText": "ANNOTATION4",
 "annKeyword" : "API_RESOLUTION"
 }
 }]
 }]
}

JSON Schemas

Schema for Dependency API_Dependency.json

A new configuration file is introduced. The API for dependency has a new type of attribute "type":
"post_build".

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "AD Extensibility dependencies definition file",
 "type": "object",
 "properties": {
 "info": {
 "type": "object",
 "properties": {
 "version": {
 "type": "string",
 "description": "The extension file version",
 "pattern": "^[0-9]+\\.[0-9]+\\.[0-9]+"
 }
 },
 "required": [
 "version"
]
 },
 "extensions": {
 "type": "array",
 "minItems": 1,
 "items": {
 "$ref": "#/definitions/Extension"
 }
 }
 },
 "required": [
 "info",
 "extensions"
],
 "definitions": {
 "Extension":
 {
 "type": "object",
 "properties": {
 "apiKey": {
 "type": "string",
 "minLength": 1
 },
 "name": {
 "type": "string",
 "minLength": 1
 },
 "type": {
 "type": "string",
 "enum": [
 "post_build"

Appendix 4 - Extensibility JSON/Configuration File Examples 115

],
 "description": "Extension for dependencies",
 "minLength": 1
 }
 },
 "required": [
 "apiKey",
 "name",
 "type"
],
 "additionalProperties": false
 }
 }
}
}

The ue-config.json schema, present in the “API/Macro Call Extensibility Examples ” on page 98
introduces a new API type "type":"dependency-file-json".

Schema for Dependency resolution.json
{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "version": "1.0.0",
 "type": "object",
 "description": "The json schema for a file-json based AD dependency resolutions.",
 "properties": {
 "schemaVersion": {
 "description": "This json schema version.",
 "$ref": "#/definitions/versionDef"
 },
 "documentVersion": {
 "description": "The user exit dependency json file version.",
 "$ref": "#/definitions/versionDef"
 },
 "entries": {
 "type": "array",
 "description": "An array containing the user exit dependency content.",
 "items": {
 "type": "object",
 "description": "A user exit dependency content object.",
 "properties": {
 "input": {
 "type": "object",
 "description": "An object which contains the inputs for the user exit dependency.",
 "properties": {
 "apiKey": {
 "type": "string",
 "description": "The parameter key as defined in the API config json."
 },
 "apiText": {
 "type": "string",
 "description": "The name of the API_NOT_SOURCE as defined in the API config json."
 }
 },
 "required": [
 "apiKey"
],
 "additionalProperties": false
 },
 "resolutions": {
 "type": "array",
 "description": "An array which contains the user exit resolution objects.",
 "properties": {
 "action": {
 "type": "string",
 "description" : "The name of the action, expect dependency.",
 "enum": [
 "dependency"
]
 },
 "source": {
 "$ref": "#/definitions/sourceDef"
 },
 "target": {
 "$ref": "#/definitions/targetDef"
 }
 }
 }
 },
 "additionalProperties": false,
 "required": [
 "resolutions",
 "input"
]
 }
 }
 },
 "required": [
 "entries",
 "schemaVersion",
 "documentVersion"
],
 "definitions": {
 "versionDef": {
 "type": "string",
 "description": "A schema/document versioning pattern.",
 "pattern": "^[0-9]{1,3}\\.[0-9]{1,3}(\\.[0-9]{1,3})?$"
 },
 "sourceDef": {
 "properties": {
 "resourceType": {
 "type": "string",
 "description": "A string which defines the source type of the resource from depedency relation."
 },
 "value": {
 "type": "string",
 "description": "A string which defines the source name of the resource from depedency relation."
 },
 "qualifier": {
 "type": "string",
 "description": "A string which defines the qualifier of the resource from depedency relation."
 }
 },
 "required": [
 "resourceType",
 "value"
]
 },
 "targetDef": {
 "properties": {
 "resourceType": {
 "type": "string",
 "description": "A string which defines the target type of the resource from depedency relation."
 },

116 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

 "value": {
 "type": "string",
 "description": "A string which defines the target name of the resource from depedency relation."
 },
 "annText": {
 "type": "string",
 "description": "A string which defines the key of the annotation."
 },
 "annKeyword": {
 "type": "string",
 "description": "A string which defines the text of the annotation."
 }
 }
 }
 }
}

Appendix 4 - Extensibility JSON/Configuration File Examples 117

118 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

Appendix 5 - z/OS Subsystem and Third-Party Product
Configuration Checklists

The purpose of this appendix is to provide checklists for configuring IBM Application Discovery to interact
with common z/OS subsystems and third-party tools. These configurations require changes both to IBM
AD Build Configuration and IBM AD Connect for Mainframe on z/OS.

Db2 Checklist

The following steps must be performed to enable IBM AD to interact with Db2 on z/OS:

1. Add the primary Db2 installation load library to the z/OS Connector/Listener procedure JCL. For more
information, see Configuring the Listener PROC.

2. Customize and submit the Db2 bind jobs.

Note: You can create a DBRM-based plan, or a more current package-based plan (recommended).
3. Configure the IBM AD Build Server to access Db2 (Db2 subsystem name/level of Db2).
4. Manually access Db2 information through IBM AD Build Configuration.

For detailed information about the above-mentioned steps, check the IBM Application Discovery
Connect for Mainframe documentation.

ChangeMan® ZMF Checklist

The following steps must be performed to configure ChangeMan® ZMF:

1. Modify the sample JCL member IAYXMLRQ.
2. Allocate the XMLIN data sets.
3. Allocate the XMLOUT data sets.
4. Additionally, set up Continuous Rule Validation.
5. Follow the steps from “Bringing Data From Mainframe Using ChangeMan® ZMF” on page 73.

For detailed information about the above-mentioned steps, check the IBM Application Discovery
Connect for Mainframe documentation.

© Copyright IBM Corp. 2010, 2019 119

https://www.ibm.com/support/knowledgecenter/en/SSRR9Q_5.1.0/IBM_AD_Connect_for_Mainframe_Configuration_Guide_OUT_KC/configuring_the_listener_proc.html

120 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

Documentation Notices for IBM Application Discovery for
IBM Z

This edition applies to version 5.1.0 of IBM Application Discovery for IBM Z with the corresponding fix
packs.
© Copyright International Business Machines Corporation 2010, 2019. US Government Users Restricted
Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.
IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:
IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:
Intellectual Property Licensing
Legal and Intellectual Property
Law
IBM Japan Ltd.
19-21, Nihonbashi-
Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:
IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119

© Copyright IBM Corp. 2010, 2019 121

Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary. This information is for planning purposes only.

The information herein is subject to change before the products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE: This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy, modify, and distribute
these sample programs in any form without payment to IBM, for the purposes of developing, using,
marketing or distributing application programs conforming to the application programming interface for
the operating platform for which the sample programs are written. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. The sample programs are provided "AS IS", without
warranty of any kind. IBM shall not be liable for any damages arising out of your use of the sample
programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright notice
as follows: © (your company name) (year). Portions of this code are derived from IBM Corp. Sample
Programs. © Copyright IBM Corp. _enter the year or years_.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web Copyright
and trademark information.

122 IBM Application Discovery for IBM Z Build V5.1.0: User Guide

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

IBM®

SC27-8970-06

	Contents
	Chapter 1. Accessibility Features for IBM Application Discovery for IBM Z
	Chapter 2. Introduction
	IBM AD High-Level Architecture Overview
	Supported Source Components
	About This Guide
	Terms And Conventions

	Chapter 3. Installation
	Chapter 4. IBM AD Build Client
	Projects, Folders & Files
	Tasks
	Starting IBM AD Build Client
	Creating a Project
	Adjusting Settings
	Adding Files to Project Folders
	Adding Files From Mainframe Library
	Adding Files From ChangeMan ZMF Packages

	Building Projects
	Updating Projects
	Synchronize Mainframe Members
	ChangeMan – IBM AD Validation Process
	Display Build Results
	CICS CSD Information Handling
	Using IBM AD Connect for Mainframe
	Using an exported CSD report
	Deleting data from the repository
	Conflict resolutions

	Extensibility
	Preprocessing Extensibility
	API Call/Macro Extensibility
	Update API Resolutions usage using CLI

	Configuring the PL/I Preprocessor
	PL/I Preprocessor Configuration File

	Preparing repository using DDL scripts for Db2 on z/OS projects
	Creating Db2 Database Using DDL Script
	Deleting Db2 Database Using DDL Script
	Creating Annotations Database Using DDL Script

	Chapter 5. IBM AD Build Client Reference
	Main Screen
	Main Menu
	Main Screen Toolbar

	Project Tab
	Tab Icons Summary
	Right Click / Shortcut Menus
	Project Tab Shortcut Menu
	Project Node Shortcut Menu
	White Space Shortcut Menu
	Editing Shortcut Menu

	Output Pane
	Output Pane Shortcut Menu

	Working with IBM AD Build Client Windows
	Viewing Source Programs
	Building Decisions
	Additional Decisions
	Deleting a Decision
	Applying Decisions

	Using the Editor
	Using the Settings Option
	The Options Window
	The Properties Window

	Chapter 6. IBM AD Build Configuration
	Viewing Project Information
	Deleting a Project
	Renaming a Project
	Associating a z/OS Access Point to a Project
	Recreate a Repository
	Upgrade a Repository
	Stop the Mainframe Import
	Configuring the z/OS Connection
	Bringing Operational Information
	Retrieve Operational Information

	Bringing data from mainframe libraries (PDS Libraries, Endevor, Librarian, Natural)
	Retrieving Source Code Information

	Bringing Data From Mainframe Using ChangeMan® ZMF
	Retrieving ChangeMan® Information

	The zOS Tab
	Automatic Messaging

	Chapter 7. IBM AD Build Client and IBM AD Build Configuration CLI Commands
	I. Overview
	II. Description of the IBM AD Build Client Batch Commands
	III. Description of the IBM AD Build Configuration Batch Commands
	IV. Use Cases and Best Practices
	V. Setting up Automatic Updates with Windows Scheduler

	Appendix 1 - API Extensibility Tutorial
	API Extensibility Sample Files
	Setting Up a Build with Sample Files
	Extending from Sample Files to Your Projects

	Appendix 2 - Log Files Location
	IBM AD Build Configuration
	IBM AD Build Client
	Synchronize Members Process Log Files
	Detailed Log Files Location

	Appendix 3 - Synchronize Members Configuration File Examples
	Appendix 4 - Extensibility JSON/Configuration File Examples
	Preprocessing Extensibility Examples
	API/Macro Call Extensibility Examples
	JCL Call Extensibility Examples
	Dependency Extensibility Examples

	Appendix 5 - z/OS Subsystem and Third-Party Product Configuration Checklists
	Documentation Notices for IBM Application Discovery for IBM Z
	Trademarks

